Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

Overview

STCN

Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang

[arXiv] [PDF] [Project Page] [Papers with Code]

bmx pigs

We present Space-Time Correspondence Networks (STCN) as the new, effective, and efficient framework to model space-time correspondences in the context of video object segmentation. STCN achieves SOTA results on multiple benchmarks while running fast at 20+ FPS without bells and whistles. Its speed is even higher with mixed precision. Despite its effectiveness, the network itself is very simple with lots of room for improvement. See the paper for technical details.

What do we have here?

  1. A gentle introduction

  2. Quantitative results and precomputed outputs

    1. DAVIS 2016
    2. DAVIS 2017 validation/test-dev
    3. YouTubeVOS 2018/2019
  3. Steps to reproduce

    1. Pretrained models
    2. Inference
    3. Training
  4. If you want to look closer

  5. Citation

A Gentle Introduction

framework

There are two main contributions: STCN framework (above figure), and L2 similarity. We build affinity between images instead of between (image, mask) pairs -- this leads to a significantly speed up, memory saving (because we compute one, instead of multiple affinity matrices), and robustness. We further use L2 similarity to replace dot product, which improves the memory bank utilization by a great deal.

Perks

  • Simple, runs fast (30+ FPS with mixed precision; 20+ without)
  • High performance
  • Still lots of room to improve upon (e.g. locality, memory space compression)
  • Easy to train: just two 11GB GPUs, no V100s needed

Requirements

We used these packages/versions in the development of this project. It is likely that higher versions of the same package will also work. This is not an exhaustive list -- other common python packages (e.g. pillow) are expected and not listed.

  • PyTorch 1.8.1
  • torchvision 0.9.1
  • OpenCV 4.2.0
  • progressbar
  • thinspline for training (pip install git+https://github.com/cheind/py-thin-plate-spline)
  • gitpython for training
  • gdown for downloading pretrained models

Refer to the official PyTorch guide for installing PyTorch/torchvision. The rest can be installed by:

pip install progressbar2 opencv-python gitpython gdown git+https://github.com/cheind/py-thin-plate-spline

Results

Notations

FPS is amortized, computed as total processing time / total number of frames irrespective of the number of objects, aka multi-object FPS, and measured on an RTX 2080 Ti with IO time excluded. We also provide inference speed when Automatic Mixed Precision (AMP) is used. We noticed that the performance is almost identical. Speed in the paper are measured without AMP. All evaluations are done in 480p resolution. FPS for test-dev is measured on the validation set under the same memory setting for consistency.

[Precomputed outputs - Google Drive]

[Precomputed outputs - OneDrive]

s012 denotes models with BL pretraining while s03 denotes those without (used to be called s02 in MiVOS).

Numbers (s012)

Dataset Split J&F J F FPS FPS (AMP)
DAVIS 2016 validation 91.7 90.4 93.0 26.9 40.8
DAVIS 2017 validation 85.3 82.0 88.6 20.2 34.1
DAVIS 2017 test-dev 79.9 76.3 83.5 14.6 22.7
Dataset Split Overall Score J-Seen J-Unseen F-Seen F-Unseen
YouTubeVOS 18 validation 84.3 83.2 79.0 87.9 87.2
YouTubeVOS 19 validation 84.2 82.6 79.4 87.0 87.7
Dataset AUC-J&F J&F @ 60s
DAVIS Interactive 88.4 88.8

For DAVIS interactive, we changed the propagation module of MiVOS from STM to STCN. See this link for details.

Reproducing the results

Pretrained models

We use the same model for YouTubeVOS and DAVIS. You can download them yourself and put them in ./saves/, or use download_model.py.

s012 model (better): [Google Drive] [OneDrive]

s03 model: [Google Drive] [OneDrive]

Inference

  • eval_davis_2016.py for DAVIS 2016 validation set
  • eval_davis.py for DAVIS 2017 validation and test-dev set (controlled by --split)
  • eval_youtube.py for YouTubeVOS 2018/19 validation set (controlled by --yv_path)

The arguments tooltip should give you a rough idea of how to use them. For example, if you have downloaded the datasets and pretrained models using our scripts, you only need to specify the output path: python eval_davis.py --output [somewhere] for DAVIS 2017 validation set evaluation. For YouTubeVOS evaluation, point --yv_path to the version of your choosing.

Training

Data preparation

I recommend either softlinking (ln -s) existing data or use the provided download_datasets.py to structure the datasets as our format. download_datasets.py might download more than what you need -- just comment out things that you don't like. The script does not download BL30K because it is huge (>600GB) and we don't want to crash your harddisks. See below.

├── STCN
├── BL30K
├── DAVIS
│   ├── 2016
│   │   ├── Annotations
│   │   └── ...
│   └── 2017
│       ├── test-dev
│       │   ├── Annotations
│       │   └── ...
│       └── trainval
│           ├── Annotations
│           └── ...
├── static
│   ├── BIG_small
│   └── ...
├── YouTube
│   ├── all_frames
│   │   └── valid_all_frames
│   ├── train
│   ├── train_480p
│   └── valid
└── YouTube2018
    ├── all_frames
    │   └── valid_all_frames
    └── valid

BL30K

BL30K is a synthetic dataset proposed in MiVOS.

You can either use the automatic script download_bl30k.py or download it manually from MiVOS. Note that each segment is about 115GB in size -- 700GB in total. You are going to need ~1TB of free disk space to run the script (including extraction buffer).

Training commands

CUDA_VISIBLE_DEVICES=[a,b] OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port [cccc] --nproc_per_node=2 train.py --id [defg] --stage [h]

We implemented training with Distributed Data Parallel (DDP) with two 11GB GPUs. Replace a, b with the GPU ids, cccc with an unused port number, defg with a unique experiment identifier, and h with the training stage (0/1/2/3).

The model is trained progressively with different stages (0: static images; 1: BL30K; 2: 300K main training; 3: 150K main training). After each stage finishes, we start the next stage by loading the latest trained weight.

(Models trained on stage 0 only cannot be used directly. See model/model.py: load_network for the required mapping that we do.)

The .pth with _checkpoint as suffix is used to resume interrupted training (with --load_model) which is usually not needed. Typically you only need --load_network and load the last network weights (without checkpoint in its name).

So, to train a s012 model, we launch three training steps sequentially as follows:

Pre-training on static images: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s0 --stage 0

Pre-training on the BL30K dataset: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s01 --load_network [path_to_trained_s0.pth] --stage 1

Main training: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s012 --load_network [path_to_trained_s01.pth] --stage 2

And to train a s03 model, we launch two training steps sequentially as follows:

Pre-training on static images: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s0 --stage 0

Main training: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s03 --load_network [path_to_trained_s0.pth] --stage 3

Looking closer

  • To add your datasets, or do something with data augmentations: dataset/static_dataset.py, dataset/vos_dataset.py
  • To work on the similarity function, or memory readout process: model/network.py: MemoryReader, inference_memory_bank.py
  • To work on the network structure: model/network.py, model/modules.py, model/eval_network.py
  • To work on the propagation process: model/model.py, eval_*.py, inference_*.py

Citation

Please cite our paper (MiVOS if you use top-k) if you find this repo useful!

@inproceedings{cheng2021stcn,
  title={Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation},
  author={Cheng, Ho Kei and Tai, Yu-Wing and Tang, Chi-Keung},
  booktitle={arXiv:2106.05210},
  year={2021}
}

@inproceedings{cheng2021mivos,
  title={Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion},
  author={Cheng, Ho Kei and Tai, Yu-Wing and Tang, Chi-Keung},
  booktitle={CVPR},
  year={2021}
}

And if you want to cite the datasets:

bibtex

@inproceedings{shi2015hierarchicalECSSD,
  title={Hierarchical image saliency detection on extended CSSD},
  author={Shi, Jianping and Yan, Qiong and Xu, Li and Jia, Jiaya},
  booktitle={TPAMI},
  year={2015},
}

@inproceedings{wang2017DUTS,
  title={Learning to Detect Salient Objects with Image-level Supervision},
  author={Wang, Lijun and Lu, Huchuan and Wang, Yifan and Feng, Mengyang 
  and Wang, Dong, and Yin, Baocai and Ruan, Xiang}, 
  booktitle={CVPR},
  year={2017}
}

@inproceedings{FSS1000,
  title = {FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation},
  author = {Li, Xiang and Wei, Tianhan and Chen, Yau Pun and Tai, Yu-Wing and Tang, Chi-Keung},
  booktitle={CVPR},
  year={2020}
}

@inproceedings{zeng2019towardsHRSOD,
  title = {Towards High-Resolution Salient Object Detection},
  author = {Zeng, Yi and Zhang, Pingping and Zhang, Jianming and Lin, Zhe and Lu, Huchuan},
  booktitle = {ICCV},
  year = {2019}
}

@inproceedings{cheng2020cascadepsp,
  title={{CascadePSP}: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement},
  author={Cheng, Ho Kei and Chung, Jihoon and Tai, Yu-Wing and Tang, Chi-Keung},
  booktitle={CVPR},
  year={2020}
}

@inproceedings{xu2018youtubeVOS,
  title={Youtube-vos: A large-scale video object segmentation benchmark},
  author={Xu, Ning and Yang, Linjie and Fan, Yuchen and Yue, Dingcheng and Liang, Yuchen and Yang, Jianchao and Huang, Thomas},
  booktitle = {ECCV},
  year={2018}
}

@inproceedings{perazzi2016benchmark,
  title={A benchmark dataset and evaluation methodology for video object segmentation},
  author={Perazzi, Federico and Pont-Tuset, Jordi and McWilliams, Brian and Van Gool, Luc and Gross, Markus and Sorkine-Hornung, Alexander},
  booktitle={CVPR},
  year={2016}
}

@inproceedings{denninger2019blenderproc,
  title={BlenderProc},
  author={Denninger, Maximilian and Sundermeyer, Martin and Winkelbauer, Dominik and Zidan, Youssef and Olefir, Dmitry and Elbadrawy, Mohamad and Lodhi, Ahsan and Katam, Harinandan},
  booktitle={arXiv:1911.01911},
  year={2019}
}

@inproceedings{shapenet2015,
  title       = {{ShapeNet: An Information-Rich 3D Model Repository}},
  author      = {Chang, Angel Xuan and Funkhouser, Thomas and Guibas, Leonidas and Hanrahan, Pat and Huang, Qixing and Li, Zimo and Savarese, Silvio and Savva, Manolis and Song, Shuran and Su, Hao and Xiao, Jianxiong and Yi, Li and Yu, Fisher},
  booktitle   = {arXiv:1512.03012},
  year        = {2015}
}

Contact: [email protected]

Comments
  • RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling `cublasSgemmStridedBatched

    RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling `cublasSgemmStridedBatched

    raceback (most recent call last): File "eval_youtube.py", line 133, in processor.interact(with_bg_msk, frame_idx, rgb.shape[1], obj_idx) File "/datasets/MODELS/STCN-ALL/STCN/inference_core_yv.py", line 123, in interact self.do_pass(key_k, key_v, frame_idx, end_idx) File "/datasets/MODELS/STCN-ALL/STCN/inference_core_yv.py", line 84, in do_pass for oi in self.enabled_obj], 0) File "/datasets/MODELS/STCN-ALL/STCN/inference_core_yv.py", line 84, in for oi in self.enabled_obj], 0) File "/datasets/MODELS/STCN-ALL/STCN/model/eval_network.py", line 61, in segment_with_query readout_mem = mem_bank.match_memory(qk16) File "/datasets/MODELS/STCN-ALL/STCN/inference_memory_bank.py", line 60, in match_memory readout_mem = self._readout(affinity.expand(k,-1,-1), mv) File "/datasets/MODELS/STCN-ALL/STCN/inference_memory_bank.py", line 42, in _readout return torch.bmm(mv, affinity) RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling cublasSgemmStridedBatched( handle, opa, opb, m, n, k, &alpha, a, lda, stridea, b, ldb, strideb, &beta, c, ldc, stridec, num_batches)

    opened by JerryX1110 19
  • Question about training speed.

    Question about training speed.

    First of all, thank you for your great work ! ! ! Conduct the training s0 & s2 with 2×2080Ti should take 30h as your paper. But in practice, I will take 100h just for s0 with2×2080ti (or 1*3090). So I wanted to confirm the training speed. Or maybe what's wrong with me?

    opened by PinxueGuo 14
  • Multiple objects when training

    Multiple objects when training

    Hello @hkchengrex , first of all thanks for your dedicated projects, it really inspires me a lot. This is not a bug report, but a small question.

    I have been running and modifying most of the your code base to adapt for my problem and it works acceptably. However, there is a part of the code that is still unclear to me:

    As I understand (from the code and the paper), STCN trains as a binary segmentation task , but I also notice that in the code when training on VOS you use a second additional class to train as well (by randomly choice from list of classes, if I understand correctly). May I ask what is the meaning of this? I cannot find where it is mentioned in the paper. Is it possible to use more classes ? I have tried training on masks with 2 objects on a different dataset, and it seems that the result is far better than when training with a single mask for each object.

    Thanks in advance

    opened by kaylode 11
  • How to take the prediction mask of each target in the previous frame?

    How to take the prediction mask of each target in the previous frame?

    @hkchengrex Because two targets are fixed during training, prev_mask[:,0:1] and prev_mask[:,1:2] can be used to take the masks of the two targets in the previous frame. However, the number of targets during testing is not fixed. How to take the prediction mask of each target in the previous frame?

    for i, oi in enumerate(self.enabled_obj): self.prob[self.enabled_obj,ti-1].cuda()

    image

    image

    opened by longmalongma 9
  • Can I train your codes with 4 Gpus?

    Can I train your codes with 4 Gpus?

    Can I train code with 4 Gpus? What changes need to be made for the training of 4 Gpus? Also, should 4 Gpus train faster? But will the segmentation accuracy be reduced?

    opened by longmalongma 8
  •  when training, do I only use davis2017 to train or use davis2017 and davis2016 to train together?

    when training, do I only use davis2017 to train or use davis2017 and davis2016 to train together?

    Hello, when training, do I only use davis2017 to train or use davis2017 and davis2016 to train together? By the way, how can I know whether to use davis2017 or davis2017 and davis2016 to train together?

    opened by longmalongma 8
  • Where can I find the key and value of the feature code of the labeled first frame in your test code?

    Where can I find the key and value of the feature code of the labeled first frame in your test code?

    I thought you said this was the key and value coding for the first frame with the label, but why do I encode the key for frame_idx and the value for self.images[:,frame_idx]?

    image

    There is another problem. The dimension of the key here is: torch.Size([1, 512, 1, 30, 54]), and the dimension of the value is torch.Size([3, 512, 1, 30, 54]), The first dimension here is k (num_objects), what does the third dimension represent? Are the key and value here the feature encoding of the first frame with the label? Looking forward to your reply, thank you very much. image

    opened by longmalongma 7
  • Some questions about ablation study

    Some questions about ablation study

    I am curious about the performance under the following setting. Have you tried them before?

    1. STCN w/o V.S. W/ Top-k filtering
    2. STCN V.S. STM with the same training strategy (I find that the pretraining of STCN maybe uses more data and some augmentations.
    opened by JerryX1110 7
  • how to get the figure 6?

    how to get the figure 6?

    Hi, Recently i'm trying to get the correspondences of the rest frames using the first frame of my own video, but the results are bad. Could you open source the codes that can get the correspondences like figure6 in your paper? Thanks in advance.

    opened by Liesy 6
  • Are there any other training techniques that might be useful for replicating your results?

    Are there any other training techniques that might be useful for replicating your results?

    Hi, @hkchengrex ,I have trained and tested several times according to your instructions, but I still cannot reproduce the accuracy in your paper. Are there any other training techniques that might be useful for replicating your results? By the way, will adding -no_amp during training improve the accuracy even further?

    opened by longmalongma 6
  • Number of instances

    Number of instances

    Thanks for your great work and code.

    I am new to this area, it seems that the maximum instance number is 2 for your code. How to deal with images with more than 2 instances?

    opened by Trainingzy 6
  • About loss being NaN,  lr_scheduler.step(), optimizer.step()

    About loss being NaN, lr_scheduler.step(), optimizer.step()

    I've read issue #44. Like that case, I change the ResNet50 to another backbone. So I check the link you mentioned: https://discuss.pytorch.org/t/optimizer-step-before-lr-scheduler-step-error-using-gradscaler/92930/7

    And therefore i change codes as below: change

    But seems losses( all 3 losses) still being NaN and the warning of "UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate" still exsists.

    problem

    Is this normal or do I need to modify losses.py?

    Thank you.

    opened by FlyDre 2
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022