Multivariate Boosted TRee

Related tags

Deep Learningmbtr
Overview

Documentation Status Build Status codecov Latest Version License: MIT

Multivariate Boosted TRee

What is MBTR

MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can handle arbitrary multivariate losses, as long as their gradient and Hessian are known. Gradient boosted trees are competition-winning, general-purpose, non-parametric regressors, which exploit sequential model fitting and gradient descent to minimize a specific loss function. The most popular implementations are tailored to univariate regression and classification tasks, precluding the possibility of capturing multivariate target cross-correlations and applying conditional penalties to the predictions. This package allows to arbitrarily regularize the predictions, so that properties like smoothness, consistency and functional relations can be enforced.

Installation

pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git

Usage

MBT regressor follows the scikit-learn syntax for regressors. Creating a default instance and training it is as simple as:

m = MBT().fit(x,y)

while predictions for the test set are obtained through

y_hat = m.predict(x_te)

The most important parameters are the number of boosts n_boost, that is, the number of fitted trees, learning_rate and the loss_type. An extensive explanation of the different parameters can be found in the documentation.

Documentation

Documentation and examples on the usage can be found at docs.

Reference

If you make use of this software for your work, we would appreciate it if you would cite us:

Lorenzo Nespoli and Vasco Medici (2020). Multivariate Boosted Trees and Applications to Forecasting and Control arXiv

@article{nespoli2020multivariate,
  title={Multivariate Boosted Trees and Applications to Forecasting and Control},
  author={Nespoli, Lorenzo and Medici, Vasco},
  journal={arXiv preprint arXiv:2003.03835},
  year={2020}
}

Acknowledgments

The authors would like to thank the Swiss Federal Office of Energy (SFOE) and the Swiss Competence Center for Energy Research - Future Swiss Electrical Infrastructure (SCCER-FURIES), for their financial and technical support to this research work.

You might also like...
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

NAS Benchmark in
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

This is the code repository implementing the paper
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

Comments
  • Is it possible to define custom loss function ?

    Is it possible to define custom loss function ?

    Dear all, First thank you for developping this tool, that I believe is of great interest. I am working with:

    • environmental variables (e.g. temperature, salinity)
    • multi-dimensional targets, that are relative abundance, with their sum = 1 for each site

    Therefore, I was wondering if it is possible to implement a custom loss function in the mbtr framework, that would be adapted for proportions. Please note that I am quite new to python.

    To do some testing, I tryed to dupplicate the mse loss function with another name in the losses.py file and adding the new loss in the LOSS_MAP in __inits__.py. Then I compiled the files. However, I have this error when trying to run the model from the multi_reg.py example:

    >>> m = MBT(loss_type = 'mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      3%|▎         | 1/30 [00:03<01:45,  3.63s/it]
    >>> m = MBT(loss_type = 'custom_mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      0%|          | 0/30 [00:00<?, ?it/s]KeyError: 'custom_mse'
    

    It seems that the new loss is not recognised in LOSS_MAP:

    >>> LOSS_MAP = {'custom_mse': losses.custom_MSE,
    ...             'mse': losses.MSE,
    ...             'time_smoother': losses.TimeSmoother,
    ...             'latent_variable': losses.LatentVariable,
    ...             'linear_regression': losses.LinRegLoss,
    ...             'fourier': losses.FourierLoss,
    ...             'quantile': losses.QuantileLoss,
    ...             'quadratic_quantile': losses.QuadraticQuantileLoss}
    AttributeError: module 'mbtr.losses' has no attribute 'custom_MSE'
    

    I guess that I missed something when trying to dupplicate and rename the mse loss. I would appreciate any help if the definition of a custom loss function is possible.

    Best regards,

    opened by alexschickele 2
  • Dataset cannot be reached

    Dataset cannot be reached

    Hi thank you for your effort to create this. I want to try this but i cannot download nor visit the web that you provided in example multivariate_forecas.py

    Is there any alternative link for that dataset? thank you regards!

    opened by kristfrizh 1
  • Error at import time with python 3.10.*

    Error at import time with python 3.10.*

    I want to use MBTR in a teaching module and I need to use jupyter-lab inside a conda environment for teaching purposes. While MBTR works as expected in a vanilla python 3.8, it errors out (on the same machine) in a conda environment using python 3.10

    Steps to reproduce

    conda create --name testenv
    conda activate testenv
    
    conda install -c conda-forge jupyterlab
    pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git
    # to make sure to get the latest version; but the version on pypi gives the same error 
    

    Then

    python
    

    and in python

    from mbtr.mbtr import MBT
    

    which outputs the following error

    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 317, in <module>
        def leaf_stats(y, edges, x, order):
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/decorators.py", line 219, in wrapper
        disp.compile(sig)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 965, in compile
        cres = self._compiler.compile(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 129, in compile
        raise retval
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 139, in _compile_cached
        retval = self._compile_core(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 152, in _compile_core
        cres = compiler.compile_extra(self.targetdescr.typing_context,
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 716, in compile_extra
        return pipeline.compile_extra(func)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 452, in compile_extra
        return self._compile_bytecode()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 520, in _compile_bytecode
        return self._compile_core()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 499, in _compile_core
        raise e
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 486, in _compile_core
        pm.run(self.state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 368, in run
        raise patched_exception
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 356, in run
        self._runPass(idx, pass_inst, state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lock
        return func(*args, **kwargs)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 311, in _runPass
        mutated |= check(pss.run_pass, internal_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 273, in check
        mangled = func(compiler_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 105, in run_pass
        typemap, return_type, calltypes, errs = type_inference_stage(
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 83, in type_inference_stage
        errs = infer.propagate(raise_errors=raise_errors)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typeinfer.py", line 1086, in propagate
        raise errors[0]
    numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
    No conversion from UniTuple(none x 2) to UniTuple(array(float64, 2d, A) x 2) for '$116return_value.7', defined at None
    
    File ".conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    
    During: typing of assignment at /home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py (327)
    
    File ".conda/envs/test/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    

    Thanks in advance for any pointer/help. The course where I want to present this is a summer course and is closing in on me 😉

    opened by jiho 0
Releases(v0.1.3)
Owner
SUPSI-DACD-ISAAC
SUPSI-DACD-ISAAC
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022