On the adaptation of recurrent neural networks for system identification

Overview

On the adaptation of recurrent neural networks for system identification

This repository contains the Python code to reproduce the results of the paper On the adaptation of recurrent neural networks for system identification by Marco Forgione, Aneri Muni, Dario Piga, and Marco Gallieri.

We introduce a transfer learning approach which enables fast and efficient adaptation of Recurrent Neural Network models.

A nominal RNN model is first identified using available measurements. The system dynamics are then assumed to change, leading to an unacceptable degradation of the nominal model performance on the perturbed system.

To cope with the mismatch, the model is augmented with an additive correction term trained on fresh data from the new dynamic regime. The correction term is learned through a Bayesian Linear Regression (BLR) method defined in terms of the features spanned by the nominal model's Jacobian with respect to its parameters.

RNN_adaptation

A non-parametric view of the approach is also proposed, which extends the recent work on Gaussian Process with Neural Tangent Kernel (NTK-GP) discussed in [1] to the RNN case (RNTK-GP).

Finally, we introduce an approach to initialize the RNN state based on a context of past data, so that an estimate of the initial state is not needed on top of the parameter estimation.

RNN_initialization

Folders:

Software requirements:

Simulations were performed on a Python 3.8 conda environment with

  • numpy
  • matplotlib
  • pandas
  • pytorch (version 1.8.1)

These dependencies may be installed through the commands:

conda install numpy scipy pandas matplotlib
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

Citing

If you find this project useful, we encourage you to

  • Star this repository
  • Cite the paper

To cite the paper, you may use the following BibTex entry:

@article{forgione2022adapt,
  title={On the adaptation of recurrent neural networks for system identification},
  author={Forgione, M. and Muni, A. and Piga, D. and Gallieri, M.},
  journal={arXiv e-prints arXiv:2201.08660},
  year={2022}
}

Using the IEEEtran bibliography style, it should look like:

M. Forgione, A. Muni, D. Piga, and M. Gallieri, "On the adaptation of recurrent neural networks for system identification," arXiv preprint arXiv:2201.08660, 2022.

Bibliography

[1] W. Maddox, S. Tang, P. Moreno, A. Wilson, and A. Damianou, "Fast Adaptation with Linearized Neural Networks,"
in Proc. of the International Conference on Artificial Intelligence and Statistics, 2021.

Owner
Marco Forgione
Researcher in Automatic Control and Machine Learning at the Dalle Molle Institute for Artificial Intelligence (IDSIA), Switzerland
Marco Forgione
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022