Code for the paper Task Agnostic Morphology Evolution.

Overview

Task-Agnostic Morphology Optimization

This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Abbeel, and Lerrel Pinto published at ICLR 2021.

The code has been cleaned up to make it easier to use. An older version of the code was made available with the ICLR submission here.

Setup

The code was tested and used on Ubuntu 20.04. Our baseline implementations use taskset, an ubuntu program for setting CPU affinity. You need taskset to run some of the experiments, and the code will fail without it.

Install the conda environment using the provided file via the command conda env create -f environment.yml. Given this project involves only state based RL, the environment does not install CUDA and the code is setup to use CPU. Activate the environment with conda activate morph_opt.

Next, make sure to install the optimal_agents package by running pip install -e . from the github directory. This will use the setup.py file.

The code is built on top of Stable Baselines 3, Pytorch, and Pytorch Geometric. The exact specified version of stable baselines 3 is required.

Running Experiments

Currently, configs for the 2D experiments have been pushed to the repo. I'm working on pushing more config files that form the basis for the experiments run. To run large scale experiments for the publication, we used additional AWS tools.

Evolution experiments can be run using the train_ea.py script found in the scripts directory. Below are example commands for running different morphology evolution algorithms:

python scripts/train_ea.py -p configs/locomotion2d/2d_tame.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_tamr.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_nge_no_pruning.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_nge_pruning.yaml

After running evolution to discover good morphologies, you can evaluate them using PPO via the provided eval configs.

python scripts/train_rl.py -p configs/locomotion2d/2d_eval.yaml

Note that you have to edit the config file to include either the path to the optimized morphology or a predefined type like random2d or cheetah. We evaluate all morphologies across a number of different environments. The provided configuration file runs evaluations for just one.

To better keep track of the experiment names, you can edit the name field in the config files.

By default, experiments are saved to the data directory. This can be changed by providing an output location with the -o flag.

Rendering, Testing, and Plotting

See the test scripts for viewing agents after they have been trained.

For plotting results like those in the paper, use the plotting scripts. Note that to use the plotting scripts correctly, a specific directory structure is required. Details for this can be found in optimal_agents/utils/plotter.py.

Citing

If you use this code. Please cite the paper.

Owner
Joey Hejna
Joey Hejna
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022