Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Overview

Discriminative Sounding Objects Localization

Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovisual Matching (The previous title is Learning to Discriminatively Localize Sounding Objects in a Cocktail-party Scenario). The code is implemented on PyTorch with python3.

Requirements

  • PyTorch 1.1
  • torchvision
  • scikit-learn
  • librosa
  • Pillow
  • opencv

Running Procedure

For experiments on Music or AudioSet-instrument, the training and evaluation procedures are similar, respectively under the folder music-exp and audioset-instrument. Here, we take the experiments on Music dataset as an example.

Data Preparation

The sounding object bounding box annotations on solo and duet are stored in music-exp/solotest.json and music-exp/duettest.json, and the data and annotations of synthetic set are available at https://zenodo.org/record/4079386#.X4PFodozbb2 . And the Audioset-instrument balanced subset bounding box annotations are in audioset-instrument/audioset_box.json

Training

Stage one
training_stage_one.py [-h]
optional arguments:
[--batch_size] training batchsize
[--learning_rate] learning rate
[--epoch] total training epoch
[--evaluate] only do testing or also training
[--use_pretrain] whether to initialize from ckpt
[--ckpt_file] the ckpt file path to be resumed
[--use_class_task] whether to use localization-classification alternative training
[--class_iter] training iterations for classification of each epoch
[--mask] mask threshold to determine whether is object or background
[--cluster] number of clusters for discrimination
python3 training_stage_one.py

After training of stage one, we will get the cluster pseudo labels and object dictionary of different classes in the folder ./obj_features, which is then used in the second stage training as category-aware object representation reference.

Stage two
training_stage_two.py [-h]
optional arguments:
[--batch_size] training batchsize
[--learning_rate] learning rate
[--epoch] total training epoch
[--evaluate] only do testing or also training
[--use_pretrain] whether to initialize from ckpt
[--ckpt_file] the ckpt file path to be resumed
python3 training_stage_two.py

Evaluation

Stage one

We first generate localization results and save then as a pkl file, then calculate metrics, IoU and AUC and also generate visualizations, by running

python3 test.py
python3 tools.py
Stage two

For evaluation of stage two, i.e., class-aware sounding object localization in multi-source scenes, we first match the cluster pseudo labels generated in stage one with gt labels to accordingly assign one object category to each center representation in the object dictionary by running

python3 match_cluster.py

It is necessary to manually ensure there is one-to-one matching between object category and each center representation.

Then we generate the localization results and calculate metrics, CIoU AUC and NSA, by running

python3 test_stage_two.py
python3 eval.py

Results

The two tables respectively show our model's performance on single-source and multi-source scenarios.

The following figures show the category-aware localization results under multi-source scenes. The green boxes mean the sounding objects while the red boxes are silent ones.

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
πŸ₯‡ LG-AI-Challenge 2022 1μœ„ μ†”λ£¨μ…˜ μž…λ‹ˆλ‹€.

LG-AI-Challenge-for-Plant-Classification Daconμ—μ„œ μ§„ν–‰λœ 농업 ν™˜κ²½ 변화에 λ”°λ₯Έ μž‘λ¬Ό 병해 진단 AI κ²½μ§„λŒ€νšŒ 에 λŒ€ν•œ μ½”λ“œμž…λ‹ˆλ‹€. (colab directory에 μ½”λ“œκ°€ 잘 정리 λ˜μ–΄μžˆμŠ΅λ‹ˆλ‹€.) Requirements python

siwooyong 10 Jun 30, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Γ‡aluk 2 Jan 03, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022