Bianace Prediction Pytorch Model

Overview

Bianace Prediction Pytorch Model

Main Results

ETHUSDT from 2021-01-01 00:00:00 to 2021-12-01 00:00:00

Time interval ROI
1d (Human) 2.74%
1d (Model) 125.05%
4h (Human) 36.86%
4h (Model) 300.37%
1h (Human) 37.55%
1h (Model) 393.66%

BTCUSDT from 2021-01-01 00:00:00 to 2021-12-01 00:00:00

Time interval ROI
1d (Human) 3.11%
1d (Model) 30.08%
4h (Human) 18.30%
4h (Model) 30.67%
1h (Human) 19.79%
1h (Model) 32.07%

Getting started

Environment

  • Test OS: Ubuntu 16.04 LTS
  • Python version: 3.8

Preparation

  • Create folders.
mkdir images
mkdir checkpoints
  • Please run pip install –r requirements.txt to install the needed libraries.

Dataset

Binance Public Data

  • Clone the repo.
  • Follow the instruction to download required data.
# ETHUSDT
python download-kline.py -s ETHUSDT -startDate 2017-08-01 -endDate 2021-12-01

# BTCUSDT
python download-kline.py -s BTCUSDT -startDate 2017-08-01 -endDate 2021-12-01
  • It will download the required data as below. Unzip the zip files under the 1h, 4h and 1d directories.
binance_prediction_pytorch
    `-- binance-public-data
        `-- data
            `-- data
                `-- spot
                    |-- daily
                    `-- monthly
                        `-- klines
                            |-- ETHUSDT
                            `-- BTCUSDT
  • Then soft link the data directory to the repo root as below.
binance_prediction_pytorch
    |-- binance-public-data
    `-- data
        `-- spot
            |-- daily
            `-- monthly
                `-- klines
                    |-- ETHUSDT
                    `-- BTCUSDT

Experiments

Training

  • Run training and evaluation on ETHUSDT. It will store the checkpoints under checkpoints with ticker name and time interval if don't specify the checkpoint path with --ckpt.
# 1d
./run.sh ETHUSDT 1d

# 4h
./run.sh ETHUSDT 4h --sell_rate 0.03

# 1h
./run.sh ETHUSDT 1h --sell_rate 0.03
  • Run training and evaluation on BTCUSDT
# 1d
./run.sh BTCUSDT 1d

# 4h
./run.sh BTCUSDT 4h --sell_rate 0.03

# 1h
./run.sh BTCUSDT 1h --sell_rate 0.03

Inference

  • Specify the checkpoint path with eval mode to only do the inference.
./run.sh ETHUSDT 1h --sell_rate 0.03 --ckpt ${YOUR_CHECKPOINT_PATH} --eval
Owner
RoyYang
M.S. student @ VSLab
RoyYang
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022