Bianace Prediction Pytorch Model

Overview

Bianace Prediction Pytorch Model

Main Results

ETHUSDT from 2021-01-01 00:00:00 to 2021-12-01 00:00:00

Time interval ROI
1d (Human) 2.74%
1d (Model) 125.05%
4h (Human) 36.86%
4h (Model) 300.37%
1h (Human) 37.55%
1h (Model) 393.66%

BTCUSDT from 2021-01-01 00:00:00 to 2021-12-01 00:00:00

Time interval ROI
1d (Human) 3.11%
1d (Model) 30.08%
4h (Human) 18.30%
4h (Model) 30.67%
1h (Human) 19.79%
1h (Model) 32.07%

Getting started

Environment

  • Test OS: Ubuntu 16.04 LTS
  • Python version: 3.8

Preparation

  • Create folders.
mkdir images
mkdir checkpoints
  • Please run pip install –r requirements.txt to install the needed libraries.

Dataset

Binance Public Data

  • Clone the repo.
  • Follow the instruction to download required data.
# ETHUSDT
python download-kline.py -s ETHUSDT -startDate 2017-08-01 -endDate 2021-12-01

# BTCUSDT
python download-kline.py -s BTCUSDT -startDate 2017-08-01 -endDate 2021-12-01
  • It will download the required data as below. Unzip the zip files under the 1h, 4h and 1d directories.
binance_prediction_pytorch
    `-- binance-public-data
        `-- data
            `-- data
                `-- spot
                    |-- daily
                    `-- monthly
                        `-- klines
                            |-- ETHUSDT
                            `-- BTCUSDT
  • Then soft link the data directory to the repo root as below.
binance_prediction_pytorch
    |-- binance-public-data
    `-- data
        `-- spot
            |-- daily
            `-- monthly
                `-- klines
                    |-- ETHUSDT
                    `-- BTCUSDT

Experiments

Training

  • Run training and evaluation on ETHUSDT. It will store the checkpoints under checkpoints with ticker name and time interval if don't specify the checkpoint path with --ckpt.
# 1d
./run.sh ETHUSDT 1d

# 4h
./run.sh ETHUSDT 4h --sell_rate 0.03

# 1h
./run.sh ETHUSDT 1h --sell_rate 0.03
  • Run training and evaluation on BTCUSDT
# 1d
./run.sh BTCUSDT 1d

# 4h
./run.sh BTCUSDT 4h --sell_rate 0.03

# 1h
./run.sh BTCUSDT 1h --sell_rate 0.03

Inference

  • Specify the checkpoint path with eval mode to only do the inference.
./run.sh ETHUSDT 1h --sell_rate 0.03 --ckpt ${YOUR_CHECKPOINT_PATH} --eval
Owner
RoyYang
M.S. student @ VSLab
RoyYang
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022