I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

Related tags

Deep LearningISECRET
Overview

I-SECRET

This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining".

Data preparation

  1. Firstly, download EyeQ dataset from EyeQ.
  2. Split the dataset into train/val/test according to the EyePACS challenge.
  3. Run
python tools/degrade_eyeq.py --degrade_dir ${DATA_PATH}$ --output_dir $OUTPUT_PATH$ --mask_dir ${MASK_PATH}$ --gt_dir ${GT_PATH}$.

Note that this scipt should be applied for usable dataset for cropping pre-processing.

  1. Make the architecture of the EyeQ directory as:
.
├── 
├── train
│   └── crop_good
│   └── degrade_good
│   └── crop_usable
├── val
│   └── crop_good
│   └── degrade_good
│   └── crop_usable
├── test
│   └── crop_good
│   └── degrade_good
│   └── crop_usable

Here, the crop_good is the ${GT_PATH}$ in the step 3, and degrade_good is the ${OUTPUT_PATH}$ in the step 3.

Package install

Run

pip install -r requirements.txt

Run pipeline

Run the baseline model

python main.py --model i-secret --lambda_rec 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name baseline --experiment_root_dir ${LOG_DIR}$

Run the model with IS-loss

python main.py --model i-secret --lambda_is 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name is_loss --experiment_root_dir ${LOG_DIR}$

Run the I-SECRET model

python main.py --model i-secret --lambda_is 1 --lambda_icc 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name i-secret --experiment_root_dir ${LOG_DIR}$

Visualization

Go to the ${LOG_DIR}$ / ${EXPERIMENT_NAME}$ / checkpoint, run

tensorboard --logdir ./ --port ${PORT}$

then go to localhost:${PORT}$ for detailed logging and visualization.

Test and evalutation

Run

python main.py --test --resume 0 --test_dir ${INPUT_PATH}$ --output_dir ${OUTPUT_PATH}$ --name ${EXPERIMENT_NAME}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$ 

Please note that the metric outputted by test script is under the PyTorch pre-process (resize etc.). It is not precise. Therefore, we need to run the evaluation scipt for further evaluation.

python tools/evaluate.py --test_dir ${OUTPUT_PATH}$ --gt_dir ${GT_PATH}$

Vessel segmentation

We apply the iter-Net framework. We simply replace the test set with the degraded images/enhanced images. For more details, please follow IterNet.

Future Plan

  • Cleaning codes
  • More SOTA backbones (ResNest ...)
  • WGAN loss
  • Internal evaluations for down-sampling tasks

Acknowledgment

Thanks for CutGAN for the implementation of patch NCE loss, EyeQ_Enhancement for degradation codes, Slowfast for the distributed training codes

[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022