subpixel: A subpixel convnet for super resolution with Tensorflow

Related tags

Deep Learningsubpixel
Overview

subpixel: A subpixel convolutional neural network implementation with Tensorflow

Left: input images / Right: output images with 4x super-resolution after 6 epochs:

See more examples inside the images folder.

In CVPR 2016 Shi et. al. from Twitter VX (previously Magic Pony) published a paper called Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network [1]. Here we propose a reimplementation of their method and discuss future applications of the technology.

But first let us discuss some background.

Convolutions, transposed convolutions and subpixel convolutions

Convolutional neural networks (CNN) are now standard neural network layers for computer vision. Transposed convolutions (sometimes referred to as deconvolution) are the GRADIENTS of a convolutional layer. Transposed convolutions were, as far as we know first used by Zeiler and Fergus [2] for visualization purposes while improving their AlexNet model.

For visualization purposes let us check out that convolutions in the present subject are a sequence of inner product of a given filter (or kernel) with pieces of a larger image. This operation is highly parallelizable, since the kernel is the same throughout the image. People used to refer to convolutions as locally connected layers with shared parameters. Checkout the figure bellow by Dumoulin and Visin [3]:

source

Note though that convolutional neural networks can be defined with strides or we can follow the convolution with maxpooling to downsample the input image. The equivalent backward operation of a convolution with strides, in other words its gradient, is an upsampling operation, where zeros a filled in between non-zeros pixels followed by a convolution with the kernel rotated 180 degrees. See representation copied from Dumoulin and Visin again:

source

For classification purposes, all that we need is the feedforward pass of a convolutional neural network to extract features at different scales. But for applications such as image super resolution and autoencoders, both downsampling and upsampling operations are necessary in a feedforward pass. The community took inspiration on how the gradients are implemented in CNNs and applied them as a feedforward layer instead.

But as one may have observed the upsampling operation as implemented above with strided convolution gradients adds zero values to the upscale the image, that have to be later filled in with meaningful values. Maybe even worse, these zero values have no gradient information that can be backpropagated through.

To cope with that problem, Shi et. al [1] proposed what we argue to be one the most useful recent convnet tricks (at least in my opinion as a generative model researcher!) They proposed a subpixel convolutional neural network layer for upscaling. This layer essentially uses regular convolutional layers followed by a specific type of image reshaping called a phase shift. In other words, instead of putting zeros in between pixels and having to do extra computation, they calculate more convolutions in lower resolution and resize the resulting map into an upscaled image. This way, no meaningless zeros are necessary. Checkout the figure below from their paper. Follow the colors to have an intuition about how they do the image resizing. Check this paper for further understanding.

source

Next we will discuss our implementation of this method and later what we foresee to be the implications of it everywhere where upscaling in convolutional neural networks was necessary.

Subpixel CNN layer

Following Shi et. al. the equation for implementing the phase shift for CNNs is:

source

In numpy, we can write this as

def PS(I, r):
  assert len(I.shape) == 3
  assert r>0
  r = int(r)
  O = np.zeros((I.shape[0]*r, I.shape[1]*r, I.shape[2]/(r*2)))
  for x in range(O.shape[0]):
    for y in range(O.shape[1]):
      for c in range(O.shape[2]):
        c += 1
        a = np.floor(x/r).astype("int")
        b = np.floor(y/r).astype("int")
        d = c*r*(y%r) + c*(x%r)
        print a, b, d
        O[x, y, c-1] = I[a, b, d]
  return O

To implement this in Tensorflow we would have to create a custom operator and its equivalent gradient. But after staring for a few minutes in the image depiction of the resulting operation we noticed how to write that using just regular reshape, split and concatenate operations. To understand that note that phase shift simply goes through different channels of the output convolutional map and builds up neighborhoods of r x r pixels. And we can do the same with a few lines of Tensorflow code as:

def _phase_shift(I, r):
    # Helper function with main phase shift operation
    bsize, a, b, c = I.get_shape().as_list()
    X = tf.reshape(I, (bsize, a, b, r, r))
    X = tf.transpose(X, (0, 1, 2, 4, 3))  # bsize, a, b, 1, 1
    X = tf.split(1, a, X)  # a, [bsize, b, r, r]
    X = tf.concat(2, [tf.squeeze(x) for x in X])  # bsize, b, a*r, r
    X = tf.split(1, b, X)  # b, [bsize, a*r, r]
    X = tf.concat(2, [tf.squeeze(x) for x in X])  #
    bsize, a*r, b*r
    return tf.reshape(X, (bsize, a*r, b*r, 1))

def PS(X, r, color=False):
  # Main OP that you can arbitrarily use in you tensorflow code
  if color:
    Xc = tf.split(3, 3, X)
    X = tf.concat(3, [_phase_shift(x, r) for x in Xc])
  else:
    X = _phase_shift(X, r)
  return X

The reminder of this library is an implementation of a subpixel CNN using the proposed PS implementation for super resolution of celeb-A image faces. The code was written on top of carpedm20/DCGAN-tensorflow, as so, follow the same instructions to use it:

$ python download.py --dataset celebA  # if this doesn't work, you will have to download the dataset by hand somewhere else
$ python main.py --dataset celebA --is_train True --is_crop True

Subpixel CNN future is bright

Here we want to forecast that subpixel CNNs are going to ultimately replace transposed convolutions (deconv, conv grad, or whatever you call it) in feedforward neural networks. Phase shift's gradient is much more meaningful and resizing operations are virtually free computationally. Our implementation is a high level one, using default Tensorflow OPs. But next we will rewrite everything with Keras so that an even larger community can use it. Plus, a cuda backend level implementation would be even more appreciated.

But for now we want to encourage the community to experiment replacing deconv layers with subpixel operatinos everywhere. By everywhere we mean:

  • Conv-deconv autoencoders
    Similar to super-resolution, include subpixel in other autoencoder implementations, replace deconv layers
  • Style transfer networks
    This didn't work in a lazy plug and play in our experiments. We have to look more carefully
  • Deep Convolutional Autoencoders (DCGAN)
    We started doing this, but as predicted we have to change hyperparameters. The network power is totally different from deconv layers.
  • Segmentation Networks (SegNets)
    ULTRA LOW hanging fruit! This one will be the easiest. Free paper, you're welcome!
  • wherever upscaling is done with zero padding

Join us in the revolution to get rid of meaningless zeros in feedfoward convnets, give suggestions here, try our code!

Sample results

The top row is the input, the middle row is the output, and the bottom row is the ground truth.

by @dribnet

References

[1] Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. By Shi et. al.
[2] Visualizing and Understanding Convolutional Networks. By Zeiler and Fergus.
[3] A guide to convolution arithmetic for deep learning. By Dumoulin and Visin.

Further reading

Alex J. Champandard made a really interesting analysis of this topic in this thread.
For discussions about differences between phase shift and straight up resize please see the companion notebook and this thread.

Owner
Atrium LTS
Atrium LTS
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023