The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

Related tags

Deep LearningRegSeg
Overview

RegSeg

The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

Paper: arxiv

params

D block

DBlock

Decoder

Decoder

Setup

Install the dependencies in requirements.txt by using pip and virtualenv.

Download Cityscapes

go to https://www.cityscapes-dataset.com, create an account, and download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip. You can delete the test images to save some space if you don't want to submit to the competition. Name the directory cityscapes_dataset. Make sure that you have downloaded the required python packages and run

CITYSCAPES_DATASET=cityscapes_dataset csCreateTrainIdLabelImgs

There are 19 classes.

Results from paper

To see the ablation studies results from the paper, go here.

Usage

To visualize your model, go to show.py. To train, validate, benchmark, and save the results of your model, go to train.py.

Results on Cityscapes server

RegSeg (exp48_decoder26, 30FPS): 78.3

Larger RegSeg (exp53_decoder29, 20 FPS): 79.5

Citation

If you find our work helpful, please consider citing our paper.

@article{gao2021rethink,
  title={Rethink Dilated Convolution for Real-time Semantic Segmentation},
  author={Gao, Roland},
  journal={arXiv preprint arXiv:2111.09957},
  year={2021}
}
Comments
  • question about STDC2-Seg75

    question about STDC2-Seg75

    Hi, I note that you benchmark the computation of STDC2-Seg75 which is not reported in the CVPR2021 paper. Did you test the speed of STDC-Seg on your own platform? How about the results?

    opened by ydhongHIT 2
  • Can not show.py

    Can not show.py

    I try show.py. But I can not.

    $ python3 show.py
    name= cityscapes
    train size: 2975
    val size: 500
    Traceback (most recent call last):
      File "show.py", line 358, in <module>
        show_cityscapes_model()
      File "show.py", line 337, in show_cityscapes_model
        show(model,val_loader,device,show_cityscapes_mask,num_images=num_images,skip=skip,images_per_line=images_per_line)
      File "show.py", line 134, in show
        outputs = model(images)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/RegSeg/model.py", line 76, in forward
        x=self.stem(x)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/RegSeg/blocks.py", line 22, in forward
        x = self.conv(x)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 446, in forward
        return self._conv_forward(input, self.weight, self.bias)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 442, in _conv_forward
        return F.conv2d(input, weight, bias, self.stride,
    RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
    
    opened by sounansu 2
  • The pretrained model link

    The pretrained model link

    Hi, thank you for sharing the code. Can you provide download link about the pretrained model(exp48_decoder26 and exp53_decoder29) in Cityscapes dataset, Thank you very much!

    opened by gaowq2017 1
  • About train bug

    About train bug

    When using seg_transforms.py through your scripts 'camvid_efficientnet_b1_hyperseg-s', there always exsist 'TypeError: resize() got an unexpected keyword argument 'interpolation'' in 174 line. Does this bug only appear in this scripts and should I modify the code when using this scripts?

    opened by 870572761 0
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • About train code

    About train code

    When training, how did the miou and accuracy calculate? On train dataset or validate dataset? I think it's calculated on val dataset due to https://github.com/RolandGao/RegSeg/blob/main/train.py#L238. I trained the base regseg model with config cityscapes_trainval_1000epochs.yam on Cityscapes and got the unbelievable results. 840794c66f23deb33666dcffc4af5b5

    opened by Asthestarsfalll 6
  • confusion on field of view  and model inference time

    confusion on field of view and model inference time

    Hi, RolandGao, nice to see a good job! I see you've done a lot of experiments on the backbone setting, but I still have some confusion after reading your published paper.

    • First, You calculate the fov of 4095 to see the bottom-right pixel when training cityscape (1024x2048), so you have verify the backbone should be exp48 [ (1,1) + (1,2) + 4 * (1, 4) + 7 *(1, 14) ] with fov (3807). But I also find the same backbone when training the CamVid (720x960). Why not use a shallow backbone? I am training my own dataset with image resolution (512 x 512), do I need to modify the backbone architecture? Can you give some advice?
    • Second, I test inference time of regseg. I notice that the speed is not better than other real-time archs due to split and dilated conv even if model costs low GFLOPs. In the application, what we are concerned about is the speed, so is there any strategy to improve the speed?
    opened by LinaShanghaitech 5
  • Why not pretrain on ImageNet?

    Why not pretrain on ImageNet?

    Hi, Thanks for your excellent work ! I notice that RegSeg can achieve a high accuracy on Cityscapes without pretraining. I also did a lot of ablation studies and I think DDRNet will drop around 3% miou if they do not use ImageNet pretraining. How about trying to train your encoder on ImageNet and see what will happen? I really look forward to your result ! Thanks !

    opened by RobinhoodKi 1
Owner
Roland
University of Toronto CS 2023
Roland
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022