PAWS 🐾 Predicting View-Assignments with Support Samples

Related tags

Deep Learningsuncet
Overview

PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples.

CD21_260_SWAV2_PAWS_Flowchart_FINAL

PAWS is a method for semi-supervised learning that builds on the principles of self-supervised distance-metric learning. PAWS pre-trains a model to minimize a consistency loss, which ensures that different views of the same unlabeled image are assigned similar pseudo-labels. The pseudo-labels are generated non-parametrically, by comparing the representations of the image views to those of a set of randomly sampled labeled images. The distance between the view representations and labeled representations is used to provide a weighting over class labels, which we interpret as a soft pseudo-label. By non-parametrically incorporating labeled samples in this way, PAWS extends the distance-metric loss used in self-supervised methods such as BYOL and SwAV to the semi-supervised setting.

Also provided in this repo is a PyTorch implementation of the semi-supervised SimCLR+CT method described in the paper Supervision Accelerates Pretraining in Contrastive Semi-Supervised Learning of Visual Representations. SimCLR+CT combines the SimCLR self-supervised loss with the SuNCEt (supervised noise contrastive estimation) loss for semi-supervised learning.

Pretrained models

We provide the full checkpoints for the PAWS pre-trained models, both with and without fine-tuning. The full checkpoints for the pretrained models contain the backbone, projection head, and prediction head weights. The finetuned model checkpoints, on the other hand, only include the backbone and linear classifier head weights. Top-1 classification accuracy for the pretrained models is reported using a nearest neighbour classifier. Top-1 classification accuracy for the finetuned models is reported using the class labels predicted by the network's last linear layer.

1% labels 10% labels
epochs network pretrained (NN) finetuned pretrained (NN) finetuned
300 RN50 65.4% 66.5% 73.1% 75.5%
200 RN50 64.6% 66.1% 71.9% 75.0%
100 RN50 62.6% 63.8% 71.0% 73.9%

Running PAWS semi-supervised pre-training and fine-tuning

Config files

All experiment parameters are specified in config files (as opposed to command-line-arguments). Config files make it easier to keep track of different experiments, as well as launch batches of jobs at a time. See the configs/ directory for example config files.

Requirements

  • Python 3.8
  • PyTorch install 1.7.1
  • torchvision
  • CUDA 11.0
  • Apex with CUDA extension
  • Other dependencies: PyYaml, numpy, opencv, submitit

Labeled Training Splits

For reproducibilty, we have pre-specified the labeled training images as .txt files in the imagenet_subsets/ and cifar10_subsets/ directories. Based on your specifications in your experiment's config file, our implementation will automatically use the images specified in one of these .txt files as the set of labeled images. On ImageNet, if you happen to request a split of the data that is not contained in imagenet_subsets/ (for example, if you set unlabeled_frac !=0.9 and unlabeled_frac != 0.99, i.e., not 10% labeled or 1% labeled settings), then the code will independently flip a coin at the start of training for each training image with probability 1-unlabeled_frac to determine whether or not to keep the image's label.

Single-GPU training

PAWS is very simple to implement and experiment with. Our implementation starts from the main.py, which parses the experiment config file and runs the desired script (e.g., paws pre-training or fine-tuning) locally on a single GPU.

CIFAR10 pre-training

For example, to pre-train with PAWS on CIFAR10 locally, using a single GPU using the pre-training experiment configs specificed inside configs/paws/cifar10_train.yaml, run:

python main.py
  --sel paws_train
  --fname configs/paws/cifar10_train.yaml

CIFAR10 evaluation

To fine-tune the pre-trained model for a few optimization steps with the SuNCEt (supervised noise contrastive estimation) loss on a single GPU using the pre-training experiment configs specificed inside configs/paws/cifar10_snn.yaml, run:

python main.py
  --sel snn_fine_tune
  --fname configs/paws/cifar10_snn.yaml

To then evaluate the nearest-neighbours performance of the model, locally, on a single GPU, run:

python snn_eval.py
  --model-name wide_resnet28w2 --use-pred
  --pretrained $path_to_pretrained_model
  --unlabeled_frac $1.-fraction_of_labeled_train_data_to_support_nearest_neighbour_classification
  --root-path $path_to_root_datasets_directory
  --image-folder $image_directory_inside_root_path
  --dataset-name cifar10_fine_tune
  --split-seed $which_prespecified_seed_to_split_labeled_data

Multi-GPU training

Running PAWS across multiple GPUs on a cluster is also very simple. In the multi-GPU setting, the implementation starts from main_distributed.py, which, in addition to parsing the config file and launching the desired script, also allows for specifying details about distributed training. For distributed training, we use the popular open-source submitit tool and provide examples for a SLURM cluster, but feel free to edit main_distributed.py for your purposes to specify a different approach to launching a multi-GPU job on a cluster.

ImageNet pre-training

For example, to pre-train with PAWS on 64 GPUs using the pre-training experiment configs specificed inside configs/paws/imgnt_train.yaml, run:

python main_distributed.py
  --sel paws_train
  --fname configs/paws/imgnt_train.yaml
  --partition $slurm_partition
  --nodes 8 --tasks-per-node 8
  --time 1000
  --device volta16gb

ImageNet fine-tuning

To fine-tune a pre-trained model on 4 GPUs using the fine-tuning experiment configs specified inside configs/paws/fine_tune.yaml, run:

python main_distributed.py
  --sel fine_tune
  --fname configs/paws/fine_tune.yaml
  --partition $slurm_partition
  --nodes 1 --tasks-per-node 4
  --time 1000
  --device volta16gb

To evaluate the fine-tuned model locally on a single GPU, use the same config file, configs/paws/fine_tune.yaml, but change training: true to training: false. Then run:

python main.py
  --sel fine_tune
  --fname configs/paws/fine_tune.yaml

Soft Nearest Neighbours evaluation

To evaluate the nearest-neighbours performance of a pre-trained ResNet50 model on a single GPU, run:

python snn_eval.py
  --model-name resnet50 --use-pred
  --pretrained $path_to_pretrained_model
  --unlabeled_frac $1.-fraction_of_labeled_train_data_to_support_nearest_neighbour_classification
  --root-path $path_to_root_datasets_directory
  --image-folder $image_directory_inside_root_path
  --dataset-name $one_of:[imagenet_fine_tune, cifar10_fine_tune]

License

See the LICENSE file for details about the license under which this code is made available.

Citation

If you find this repository useful in your research, please consider giving a star and a citation 🐾

@article{assran2021semisupervised,
  title={Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples}, 
  author={Assran, Mahmoud, and Caron, Mathilde, and Misra, Ishan, and Bojanowski, Piotr and Joulin, Armand, and Ballas, Nicolas, and Rabbat, Michael},
  journal={arXiv preprint arXiv:2104.13963},
  year={2021}
}
@article{assran2020supervision,
  title={Supervision Accelerates Pretraining in Contrastive Semi-Supervised Learning of Visual Representations},
  author={Assran, Mahmoud, and Ballas, Nicolas, and Castrejon, Lluis, and Rabbat, Michael},
  journal={arXiv preprint arXiv:2006.10803},
  year={2020}
}
Owner
Facebook Research
Facebook Research
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022