Explainer for black box models that predict molecule properties

Related tags

Deep Learningexmol
Overview

Explaining why that molecule

GitHub tests paper docs PyPI version MIT license

exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help users understand why a molecule is predicted to have a property.

Install

pip install exmol

Counterfactual Generation

Our package implements the Model Agnostic Counterfactual Compounds with STONED (MACCS) to generate counterfactuals. A counterfactual can explain a prediction by showing what would have to change in the molecule to change its predicted class. Here is an eample of a counterfactual:

This package is not popular. If the package had a logo, it would be popular.

In addition to having a changed prediction, a molecular counterfactual must be similar to its base molecule as much as possible. Here is an example of a molecular counterfactual:

counterfactual demo

The counterfactual shows that if the carboxylic acid were an ester, the molecule would be active. It is up to the user to translate this set of structures into a meaningful sentence.

Usage

Let's assume you have a deep learning model my_model(s) that takes in one SMILES string and outputs a predicted binary class. To generate counterfactuals, we need to wrap our function so that it can take both SMILES and SELFIES, but it only needs to use one.

We first expand chemical space around the prediction of interest

import exmol

# mol of interest
base = 'CCCO'

samples = exmol.sample_space(base, lambda smi, sel: my_model(smi), batched=False)

Here we use a lambda to wrap our function and indicate our function can only take one SMILES string, not a list of them with batched=False. Now we select counterfactuals from that space and plot them.

cfs = exmol.cf_explain(samples)
exmol.plot_cf(cfs)

set of counterfactuals

We can also plot the space around the counterfactual. This is computed via PCA of the affinity matrix -- the similarity with the base molecule. Due to how similarity is calculated, the base is going to be the farthest from all other molecules. Thus your base should fall on the left (or right) extreme of your plot.

cfs = exmol.cf_explain(samples)
exmol.plot_space(samples, cfs)

chemical space

Each counterfactual is a Python dataclass with information allowing it to be used in your own analysis:

print(cfs[0])
Examples(
  smiles='CCOC(=O)c1ccc(N=CN(Cl)c2ccccc2)cc1',
  selfies='[C][C][O][C][Branch1_2][C][=O][C][=C][C][=C][Branch1_1][#C][N][=C][N][Branch1_1][C][Cl][C][=C][C][=C][C][=C][Ring1][Branch1_2][C][=C][Ring1][S]',
  similarity=0.8181818181818182,
  yhat=-5.459493637084961,
  index=1807,
  position=array([-6.11371691,  1.24629293]),
  is_origin=False,
  cluster=26,
  label='Counterfactual')

Chemical Space

When calling exmol.sample_space you can pass preset=<preset>, which can be one of the following:

  • 'narrow': Only one change to molecular structure, reduced set of possible bonds/elements
  • 'medium': Default. One or two changes to molecular structure, reduced set of possible bonds/elements
  • 'wide': One through five changes to molecular structure, large set of possible bonds/elements
  • 'chemed': A restrictive set where only pubchem molecules are considered. Experimental

You can also pass num_samples as a "request" for number of samples. You will typically end up with less due to degenerate molecules. See API for complete description.

SVG

Molecules are by default drawn as PNGs. If you would like to have them drawn as SVGs, call insert_svg after calling plot_space or plot_cf

import skunk
exmol.plot_cf(exps)
svg = exmol.insert_svg(exps, mol_fontsize=16)

# for Jupyter Notebook
skunk.display(svg)

# To save to file
with open('myplot.svg', 'w') as f:
    f.write(svg)

This is done with the skunk 🦨 library.

API and Docs

Read API here. You should also read the paper (see below) for a more exact description of the methods and implementation.

Citation

Please cite Wellawatte et al.

 @article{wellawatte_seshadri_white_2021,
 place={Cambridge},
 title={Model agnostic generation of counterfactual explanations for molecules},
 DOI={10.33774/chemrxiv-2021-4qkg8},
 journal={ChemRxiv},
 publisher={Cambridge Open Engage},
 author={Wellawatte, Geemi P and Seshadri, Aditi and White, Andrew D},
 year={2021}}

This content is a preprint and has not been peer-reviewed.

Comments
  • Add LIME explanations

    Add LIME explanations

    This is a big PR!

    • [x] Document LIME function
    • [x] Compute t-stats using examples that have non-zero weights
    • [x] Add plotting code for descriptors - needs SMARTS annotations for MACCS keys (166 files)
    • [x] Add plotting code for chemical space and fit
    • [x] Description in readme
    • [x] Clean up notebooks and add documentation
    • [x] Remove extra files
    • [x] Add LIME notebooks to CI?
    opened by hgandhi2411 11
  • Error while plotting counterfactuals using plot_cf()

    Error while plotting counterfactuals using plot_cf()

    plot_cf() function errors out with the following error. This behavior is also consistent across all notebooks in paper/.

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-10-b6c8ed26216e> in <module>
          1 fkw = {"figsize": (8, 6)}
          2 mpl.rc("axes", titlesize=12)
    ----> 3 exmol.plot_cf(exps, figure_kwargs=fkw, mol_size=(450, 400), nrows=1)
          4 
          5 plt.savefig("rf-simple.png", dpi=180)
    
    /gpfs/fs2/scratch/hgandhi/exmol/exmol/exmol.py in plot_cf(exps, fig, figure_kwargs, mol_size, mol_fontsize, nrows, ncols)
        682         title += f"\nf(x) = {e.yhat:.3f}"
        683         axs[i].set_title(title)
    --> 684         axs[i].imshow(np.asarray(img), gid=f"rdkit-img-{i}")
        685         axs[i].axis("off")
        686     for j in range(i, C * R):
    
    ~/.local/lib/python3.7/site-packages/matplotlib/__init__.py in inner(ax, data, *args, **kwargs)
       1359     def inner(ax, *args, data=None, **kwargs):
       1360         if data is None:
    -> 1361             return func(ax, *map(sanitize_sequence, args), **kwargs)
       1362 
       1363         bound = new_sig.bind(ax, *args, **kwargs)
    
    ~/.local/lib/python3.7/site-packages/matplotlib/axes/_axes.py in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, filternorm, filterrad, resample, url, **kwargs)
       5607                               resample=resample, **kwargs)
       5608 
    -> 5609         im.set_data(X)
       5610         im.set_alpha(alpha)
       5611         if im.get_clip_path() is None:
    
    ~/.local/lib/python3.7/site-packages/matplotlib/image.py in set_data(self, A)
        699                 not np.can_cast(self._A.dtype, float, "same_kind")):
        700             raise TypeError("Image data of dtype {} cannot be converted to "
    --> 701                             "float".format(self._A.dtype))
        702 
        703         if self._A.ndim == 3 and self._A.shape[-1] == 1:
    
    TypeError: Image data of dtype <U14622 cannot be converted to float
    
    opened by hgandhi2411 6
  • Error after installation

    Error after installation

    Hi,

    First at all, thank you for your work!. I am obtaining a problem installing your library, o better say when I do "import exmol", I obtaing one error:"No module named 'dataclasses'".

    I have installed as: pip install exmol...

    Thanks!

    opened by PARODBE 6
  • CODEX Example

    CODEX Example

    While messing around with CODEX, I noticed it wants to compute ECFP4 fingerprints using a different method and this gives slightly different similarities. @geemi725 could you double-check the ECFP4 implementation we have is correct, or is the CODEX one correct?

    image

    opened by whitead 6
  • Object has no attribute '__code__'

    Object has no attribute '__code__'

    Hi there, I noticed that sample_space does not seem to work with class instances, because they do not have a __code__ attribute:

    import exmol
    class A:
        pass
    exmol.sample_space('C', A(), batched=True)
    
    AttributeError: 'A' object has no attribute '__code__'
    

    Is there any way around this other than forcing the call to a separate function?

    opened by oiao 5
  • The module 'exmol' has no attribute 'lime_explain'

    The module 'exmol' has no attribute 'lime_explain'

    In the notebook RF-lime.ipynb, the command

    exmol.lime_explain(space, descriptor_type=descriptor_type)

    gives a error module 'exmol' has no attribute 'lime_explain'

    Please, let me know how to fix this error. Thanks.

    opened by andresilvapimentel 5
  • Easier usage of explain

    Easier usage of explain

    Working through some examples, I've noted the following things:

    1. Descriptor type should have a default - maybe MACCS since the plots will show-up
    2. Maybe we should only save SVGs, rather than return unless prompted
    3. We should do string comparison for descriptor types using lowercase strings, so that classic and Classic and ecfp are valid.
    4. We probably shouldn't save without a filename - it is unexpected
    opened by whitead 4
  • Allow using custom list of molecules

    Allow using custom list of molecules

    Hello @whitead, this is very nice package !

    I found the new chemed option very useful and thought extending it to any list of molecule would make sense.

    Here is the main change to the API:

    explanation = exmol.sample_space(
          "CCCC",
          model,
          preset="custom", #use custom preset
          batched=False,
          data=data, # provide list of smiles or molecules
    )
    

    Let me know if this PR make sense.

    opened by maclandrol 4
  • Target molecule frequently on the edge of sample space visualization

    Target molecule frequently on the edge of sample space visualization

    In your example provided in the code, the target molecule is on the edge of the sampled distribution (in the PCA plot). I also find this happens very frequently with my experiments on my model. I think this suggests that the sampling produces molecules that are not evenly distributed around the target. I just want to verify that this is a property of the STONED sampling algorithm, and not an artifact of the visualization code (which it does not seem to be). I've attached an example of my own, for both "narrow" and "medium" presets.

    preset="narrow", nmols=10

    explain_narrow_0 05_10

    preset="medium", nmols=10

    explain_medium_0 05_10

    opened by adamoyoung 3
  • Sanitizing SMILES removes chirality information

    Sanitizing SMILES removes chirality information

    On this line of sample_space(), chirality information of origin_smiles is removed. The output is then unsuitable as input to a chirality-aware ML model, e.g. to distinguish L vs. D amino acids which are important in models of binding affinity. Could the option to skip this sanitization step be provided to the user?

    PS: Great code base and beautiful visualizations! We're finding it very useful in explaining our Gaussian Process models. The future of SAR ←→ ML looks exciting.

    opened by tianyu-lu 2
  • Release 0.5.0 on pypi

    Release 0.5.0 on pypi

    Are you planning to release 0.5.0 on pypi? I am maintaining the conda package of exmol and I would like to bump it to 0.5.0. See https://github.com/conda-forge/exmol-feedstock

    Thanks!

    opened by hadim 2
  • run_STONED couldn't generate SMILES after 30 minutes

    run_STONED couldn't generate SMILES after 30 minutes

    For certain SMILES, run_STONED() failed to generate after running for so long. So far, one SMILES known to cause such issue is

    [Na+].[Na+].[Na+].[Na+].[Na+].[O-][S](=O)(=O)OCC[S](=O)(=O)c1cccc(Nc2nc(Cl)nc(Nc3cc(cc4C=C(\C(=N/Nc5ccc6c(cccc6[S]([O-])(=O)=O)c5[S]([O-])(=O)=O)C(=O)c34)[S]([O-])(=O)=O)[S]([O-])(=O)=O)n2)c1

    Here is how I use the function: exmol.run_stoned(smiles, num_samples=10, max_mutations=1).

    opened by qcampbel 2
Releases(v2.2.1)
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022