Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Overview

Awesome Few-Shot Object Detection (FSOD)

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Maintainers: Gabriel Huang

For an introduction to the few-shot object detection framework read below, or check our our survey on few-shot and self-supervised object detection and its project page for full explanations, discussions on the pitfalls of the Pascal, COCO, and LVIS benchmarks used below, main takeaways and future research directions.

Contributing

If you want to add your paper or report a mistake, please create a pull request with all supporting information. Thanks!

Pascal VOC and MS COCO FSOD Leaderboard

In this table we distinguish Kang's Splits (Meta-YOLO) from TFA's splits (Frustratingly Simple FSOD), as the Kang splits have been shown to have high variance and overestimate performance for low number of shots (see for yourself -- check the difference between TFA 1-shot and Kang 1-shot in the table below).

Name Type VOC TFA 1-shot (mAP50) VOC TFA 3-shot (mAP50) VOC TFA 10-shot (mAP50) VOC Kang 1-shot (mAP50) VOC Kang 3-shot (mAP50) VOC Kang 10-shot (mAP50) MS COCO 10-shot (mAP) MS COCO 30-shot (mAP)
LSTD finetuning - - - 8.2 12.4 38.5 - -
RepMet prototype - - - 26.1 34.4 41.3 - -
Meta-YOLO modulation 14.2 29.8 - 14.8 26.7 47.2 5.6 9.1
MetaDet modulation - - - 18.9 30.2 49.6 7.1 11.3
Meta-RCNN modulation - - - 19.9 35.0 51.5 8.7 12.4
Faster RCNN+FT finetuning 9.9 21.6 35.6 15.2 29.0 45.5 9.2 12.5
ACM-MetaRCNN modulation - - - 31.9 35.9 53.1 9.4 12.8
TFA w/fc finetuning 22.9 40.4 52.0 36.8 43.6 57.0 10.0 13.4
TFA w/cos finetuning 25.3 42.1 52.8 39.8 44.7 56.0 10.0 13.7
Retentive RCNN finetuning - - - 42.0 46.0 56.0 10.5 13.8
MPSR finetuning - - - 41.7 51.4 61.8 9.8 14.1
Attention-FSOD modulation - - - - - - 12.0 -
FsDetView finetuning 24.2 42.2 57.4 - - - 12.5 14.7
CME finetuning - - - 41.5 50.4 60.9 15.1 16.9
TIP add-on 27.7 43.3 59.6 - - - 16.3 18.3
DAnA modulation - - - - - - 18.6 21.6
DeFRCN prototype - - - 53.6 61.5 60.8 18.5 22.6
Meta-DETR modulation 20.4 46.6 57.8 - - - 17.8 22.9
DETReg finetuning - - - - - - 18.0 30.0

Few-Shot Object Detection Explained

We explain the few-shot object detection framework as defined by the Meta-YOLO paper (Kang's splits - full details here). FSOD partitions objects into two disjoint sets of categories: base or known/source classes, which are object categories for which we have access to a large number of training examples; and novel or unseen/target classes, for which we have only a few training examples (shots) per class. The FSOD task is formalized into the following steps:

  • 1. Base training.¹ Annotations are given only for the base classes, with a large number of training examples per class (bikes in the example). We train the FSOD method on the base classes.
  • 2. Few-shot finetuning. Annotations are given for the support set, a very small number of training examples from both the base and novel classes (one bike and one human in the example). Most methods finetune the FSOD model on the support set, but some methods might only use the support set for conditioning during evaluation (finetuning-free methods).
  • 3. Few-shot evaluation. We evaluate the FSOD to jointly detect base and novel classes from the test set (few-shot refers to the size of the support set). The performance metrics are reported separately for base and novel classes. Common evaluation metrics are variants of the mean average precision: mAP50 for Pascal and COCO-style mAP for COCO. They are often denoted bAP50, bAP75, bAP (resp. nAP50, nAP75, nAP) for the base and novel classes respectively, where the number is the IoU-threshold in percentage.

In pure FSOD, methods are usually compared solely on the basis of novel class performance, whereas in Generalized FSOD, methods are compared on both base and novel class performances [2]. Note that "training" and "test" set refer to the splits used in traditional object detection. Base and novel classes are typically present in both the training and testing sets; however, the novel class annotations are filtered out from the training set during base training; during few-shot finetuning, the support set is typically taken to be a (fixed) subset of the training set; during few-shot evaluation, all of the test set is used to reduce uncertainty [1].

For conditioning-based methods with no finetuning, few-shot finetuning and few-shot evaluation are merged into a single step; the novel examples are used as support examples to condition the model, and predictions are made directly on the test set. In practice, the majority of conditioning-based methods reviewed in this survey do benefit from some form of finetuning.

*¹In the context of self-supervised learning, base-training may also be referred to as finetuning or training. This should not be confused with base training in the meta-learning framework; rather this is similar to the meta-training phase [3].

Owner
Gabriel Huang
PhD student at MILA
Gabriel Huang
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
113 Nov 28, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022