Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Overview

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

The codes for simulations were written in Fortran and compiled with the Intel Fortran Compiler. Data analysis and figures were done Python 3.10 and the following open source libraries: pandas, matplotlib and seaborn.

In this repository we show codes for simulations and processing data, as well as datasets used.

The preprint is available at https://arxiv.org/abs/2201.03476. The following BibTeX code can be used to cite it:

@misc{costa2022compartmental,
      title={Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil}, 
      author={Guilherme S. Costa and Wesley Cota and Silvio C. Ferreira},
      year={2022},
      eprint={2201.03476},
      archivePrefix={arXiv},
      primaryClass={q-bio.PE}
}

See also Effects of infection fatality ratio and social contact matrices on vaccine prioritization strategies and Outbreak diversity in epidemic waves propagating through distinct geographical scales.

Dictionaries

Municipalities :The files (a) dictES.csv and (b) dictPR.csv yield some information about municipalities of (a) ES (B) PR states. These files have six columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. ibgeID: official code to identify the city
  3. name: name of the city
  4. intermID: official code of intermediate region to which the city belongs
  5. imedID: official code of immediate region to which the city belongs
  6. totPop2019: population of the city estimated in 2019

Immediate and intermediate regions The files (a) dictImed.csv and (b) dictInterm.csv yield some information about (a) Immediate and (b) Intermediate regions of PR and ES. These files have five columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. imedID or \verb|intermID|: official code to identify the region
  3. name: name of the region
  4. state: state to which the region belongs
  5. totPop2019: population of the region estimated in 2019

States The file dictUF.csv yield some information about PR and ES states. These files have five columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. ibgeID: official code to identify the state
  3. name: name of the state
  4. uf: abbreviation of the state's name
  5. totPop2019: population of the state estimated in 2019

Time series

Cases and deaths: The files (a) PR.csv, (b) ES.csv, (c) saopaulo.csv and (d) manaus.csv yield the time series of confirmed cases and deaths since April 1, 2020 for (a) All cities of PR state, (b) All cities of ES state, (c) São Paulo city and (d) Manaus city. These files have seven columns:

  1. date: date
  2. ibgeID: official code to identify the city
  3. newCases: new confirmed cases on that day
  4. newDeaths: new confirmed deaths on that day
  5. city: name of the city
  6. totalCases: accumulated cases
  7. totalDeaths: accumulated deaths

Calibration: Within files (a) imed.zip and (b) state.zip we have the time series of accumulated cases and fatality ratio, aggregated for different geographical levels. In this, we have two types of files: casesXX.dat (XX refers to the calibrating IDs mentioned before) are accumulated cases while lethXX.dat are the daily fatalities).

Calibration Code

The file calibra.f90 is a program written in Fortran that executes the calibration algorithm described on Methods section of the main paper $1000$ times with different epidemiological parameters. This program has four inputs: the time series of accumulated cases and fatality, the initial date for calibration and the population of the region (state, city, etc). Besides that, this program has two output files: epiQuantities.dat and hiddenCompart.dat. The first has seven columns:

  1. Days from the initial time
  2. Calibrated confirmed cases
  3. Reference cases
  4. Effective reproductive number
  5. Fraction of susceptible population
  6. Underreporting coefficient
  7. Sample

On hiddenCompart.dat, we have time series for some compartments in the model: from left to right S, E, A, I, CA + CI, R + RI + RA + D and sample number.

Python scripts and figures

Calculation of underreporting coefficient: the file underreporting.ipynb is a I-python script that calculates the underreporting coefficient starting from a time series of confirmed cases and deaths. At the end, it exhibits a graphic showing the evolution of this coefficient.

Template for figures The majority of figures in this work were generated with matplotlib and seaborn packages of Python 3.7. File format_covid19br.mplstyle contains the template (font family and sizes) for generating those figures and graphics.

Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022