"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

Overview

undirected-generation-dev

This repo contains the source code of the models described in the following paper

  • "Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021. (paper).

The basic code structure was adapted from the NYU dl4mt-seqgen. We also use the pybleu from fairseq to calculate BLEU scores during the reinforcement learning.

0. Preparation

0.1 Dependencies

  • PyTorch 1.4.0/1.6.0/1.8.0

0.2 Data

The WMT'14 De-En data and the pretrained De-En MLM model are provided in the dl4mt-seqgen.

  • Download WMT'14 De-En valid/test data.
  • Then organize the data in data/ and make sure it follows such a structure:
------ data
--------- de-en
------------ train.de-en.de.pth
------------ train.de-en.en.pth
------------ valid.de-en.de.pth
------------ valid.de-en.en.pth
------------ test.de-en.de.pth
------------ test.de-en.en.pth
  • Download pretrained models.
  • Then organize the pretrained masked language models in models/ make sure it follows such a structure:
------ models
--------- best-valid_en-de_mt_bleu.pth
--------- best-valid_de-en_mt_bleu.pth

2. Training the order policy network with reinforcement learning

Train a policy network to predict the generation order for a pretrained De-En masked language model:

./train_scripts/train_order_rl_deen.sh
  • By defaults, the model checkpoints will be saved in models/learned_order_deen_uniform_4gpu/00_maxlen30_minlen5_bsz32.
  • By using this script, we are only training the model on De-En sentence pairs where both the German and English sentences with a maximum length of 30 and a minimum length of 5. You can change the training parameters max_len and min_len to change the length limits.

3. Decode the undirected generation model with learned orders

  • Set the MODEL_CKPT parameter to the corresponding path found under models/00_maxlen30_minlen5_bsz32. For example:
export MODEL_CKPT=wj8oc8kab4/checkpoint_epoch30+iter96875.pth
  • Evaluate the model on the SCAN MCD1 splits by running:
export MODEL_CKPT=...
./eval_scripts/generate-order-deen.sh $MODEL_CKPT

4. Decode the undirected generation model with heuristic orders

  • Left2Right
./eval_scripts/generate-deen.sh left_right_greedy_1iter
  • Least2Most
./eval_scripts/generate-deen.sh least_most_greedy_1iter
  • EasyFirst
./eval_scripts/generate-deen.sh easy_first_greedy_1iter
  • Uniform
./eval_scripts/generate-deen.sh uniform_greedy_1iter

Citation

@inproceedings{jiang-bansal-2021-learning-analyzing,
    title = "Learning and Analyzing Generation Order for Undirected Sequence Models",
    author = "Jiang, Yichen  and
      Bansal, Mohit",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.298",
    pages = "3513--3523",
}
Owner
Yichen Jiang
Yichen Jiang
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023