Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

Overview

Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library stable-baselines3 to derive a control policy that maximizes melt pool depth consistency. drl_am

Simulation Framework

The Repeated Usage of Stored Line Solutions (RUSLS) method proposed by Wolfer et al. is used to simulate the temperature dynamics in this work. More detail can be found in the following paper:

  • Fast solution strategy for transient heat conduction for arbitrary scan paths in additive manufacturing, Additive Manufacturing, Volume 30, 2019 (link)

Prerequisites

The following packages are required in order to run the associated code:

  • gym==0.17.3
  • torch==1.5.0
  • stable_baselines3==0.7.0
  • numba==0.50.1

These packages can be installed independently, or all at once by running pip install -r requirements.txt. We recommend that these packages are installed in a new conda environment to avoid clashes with existing package installations. Instructions on defining a new conda environment can be found here.

Usage

The overall workflow for this project first defines a gym environment based on the desired scan path, then performs Proximal Policy Optimization to derive a suitable control policy based on the environment. This is done through the following:

Overview

  • EagarTsaiModel.py: implements the RUSLS solution to the Rosenthal equation, as proposed by Wolfer et al.
  • power_square_gym.py, power_triangle_gym.py, velocity_square_gym.py, velocity_triangle_gym.py: Defines custom gym environments for the respective scan paths and control variables. square is used as shorthand for the predefined horizontal cross-hatching path and triangle is used as shorthand for the predefined concentric triangular path.
  • RL_learn_square.py, RL_learn_triangle.py performs Proximal Policy Optimization on the respective scan paths, with command line arguments to change which control parameter is varied.
  • evaluate_learned_policy.py runs a derived control policy on a specific environment. The environment is specified using command line arguments detailed below.

Testing a trained model

To test a trained model on a specific combination of scan path and control parameter, enter this command:

python evaluate_learned_policy.py --path [scan_path] --param [parameter]

Note: [scan_path] should be replaced by square for the horizontal cross-hatching scan path and triangle for the concentric triangular path. [parameter] should be replaced by power to specify power as a control parameter, and velocity to specify velocity as a control parameter.

Upon running this command, you will be prompted to enter the path to the .zip file for the trained model.

Once the evaluation is complete, the results are stored in the folder results/[scan_path]_[parameter]_control/. This folder will contain plots of the variation of the melt depth and control parameters over time, as well as their raw values for later analysis.

Pre-trained models for each of the four possible combinations of scan path and control parameter can be found in pretrained_models.

Training a new model

In order to train a new model based on the predefined horizontal cross-hatching scan path, enter the command:

python RL_learn_square.py --param [parameter]

Here, [parameter] should be replaced by the control parameter desired. The possible options are power and velocity.

The process is similar for the predefined concentric triangular scan path. To train a new model, enter the command:

python RL_learn_triangle.py --param [parameter]

Again, [parameter] should be replaced by the control parameter desired. The possible options are power and velocity.

During training, intermediate model checkpoints will be saved at

training_checkpoints/ppo_[scan_path]_[parameter]/best_model.zip

At the conclusion of training, the finished model is stored at

trained_models/ppo_[scan_path]_[parameter].zip

Defining a custom domain

Changing the powder bed features

In order to define a custom domain for use with a different problem configuration, the EagarTsaiModel.py file should be edited directly. Within the EagarTsai() class instantiation, the thermodynamic properties and domain dimensions can be specified. Additionally, the resolution and boundary conditions can be provided as arguments to the EagarTsai class. bc = 'flux' and bc = 'temp' implements an adiabatic and constant temperature boundary condition respectively.

Changing the scan path

A new scan path can be defined by creating a new custom gym environment, and writing a custom step() function to represent the desired scan path, similar to the [parameter]_[scan_path]_gym.py scripts in this repository. Considerations for both how the laser moves during a single segment and the placement of each segment within the overall path should be described in this function. More detail on the gym framework for defining custom environments can be found here.

Monitoring the training process with TensorBoard

Tensorboard provides resources for monitoring various metrics of the PPO training process, and can be installed using pip install tensorboard. To open the tensorboard dashboard, enter the command:

tensorboard --log_dir ./tensorboard_logs/ppo_[scan_path]_[parameter]/ppo_[scan_path]_[parameter]_[run_ID]

Tensorboard log files are periodically saved during training, with information on cumulative reward as well as various loss metrics.

Owner
BaratiLab
BaratiLab
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023