MARE - Multi-Attribute Relation Extraction

Related tags

Deep Learningmare
Overview

MARE - Multi-Attribute Relation Extraction

Repository for the paper submission: #TODO: insert link, when available

Environment

Tested with Ubuntu 18.04, Anaconda 2020.11 and NVIDIA driver version 450.102.04 If you have a lower driver version and you don't need to train own models, we recommend to install the environment without the cuda requirement.

If you have no coda-compatible GPU, delete the cudatoolkit dependency from the environment.yml file. If you do not have a cuda GPU, remove the line

- cudatoolkit=10.2.89

from environment.yml.

To install the conda environment execute

conda env create -f environment.yml

Install mare (the local directory) via pip

pip install -e .

This may take several minutes.

Reproduction of results

To reproduce the values from the Paper, download the corresponding models from https://fh-aachen.sciebo.de/s/D5FLVN7qk2UTCmX and put the .tar.gz files in the models folder or execute the following shell commands.

wget -c https://fh-aachen.sciebo.de/s/D5FLVN7qk2UTCmX/download -O models.zip

unzip models.zip

rm models.zip

The following instructions can be used to reproduce the results in the paper. All evaluations create a subfolder in evaluations.

Sequence Tagging

The values for AR, Cl, MRE, CRE und BRE correspond to the values of MARE Seq. Tag. in Table 2.

The F1 scores for AR_no_trigger und MRE_no_trigger correspond to the values of Seq. Tag. with Trigger un Table 3

sh scripts/evaluate_model.sh models/sequence.tar.gz evaluations/seq_tag seq_lab_elmo_pred mare

The result shoud be

EVALUATION RESULTS FOR MRE

precision_micro: 0.42957746478873204
recall_micro: 0.4765625
f1_micro: 0.45185185185185106

EVALUATION RESULTS FOR Cl

precision_micro: 0.725352112676056
recall_micro: 0.8046875
f1_micro: 0.7629629629629631

EVALUATION RESULTS FOR CRE

precision_micro: 0.28169014084507005
recall_micro: 0.3125
f1_micro: 0.296296296296296

EVALUATION RESULTS FOR AR

precision_micro: 0.660412757973733
recall_micro: 0.6591760299625461
f1_micro: 0.659793814432989

EVALUATION RESULTS FOR BRE

precision_micro: 0.439252336448598
recall_micro: 0.49473684210526303
f1_micro: 0.46534653465346504

EVALUATION RESULTS FOR MRE_no_trigger

precision_micro: 0.464788732394366
recall_micro: 0.515625
f1_micro: 0.48888888888888804

EVALUATION RESULTS FOR AR_no_trigger

precision_micro: 0.6410891089108911
recall_micro: 0.6301703163017031
f1_micro: 0.635582822085889

Span Labeling

The values for AR, Cl, MRE, CRE und BRE correspond to the values of MARE Span Lab. in Table 2.

The F1 scores for AR_no_trigger und MRE_no_trigger correspond to the values of Span Lab. with Trigger un Table 3

sh scripts/evaluate_model.sh models/span_based.tar.gz evaluations/span_lab mare.span_based_precidtor.SpanBasedPredictor mare

The result shoud be

EVALUATION RESULTS FOR MRE

precision_micro: 0.47244094488188904
recall_micro: 0.46875000000000006
f1_micro: 0.47058823529411703

EVALUATION RESULTS FOR Cl

precision_micro: 0.8031496062992121
recall_micro: 0.796875
f1_micro: 0.8

EVALUATION RESULTS FOR CRE

precision_micro: 0.291338582677165
recall_micro: 0.2890625
f1_micro: 0.290196078431372

EVALUATION RESULTS FOR AR

precision_micro: 0.751619870410367
recall_micro: 0.651685393258427
f1_micro: 0.698094282848545

EVALUATION RESULTS FOR BRE

precision_micro: 0.49473684210526303
recall_micro: 0.49473684210526303
f1_micro: 0.49473684210526303

EVALUATION RESULTS FOR MRE_no_trigger

precision_micro: 0.519685039370078
recall_micro: 0.515625
f1_micro: 0.517647058823529

EVALUATION RESULTS FOR AR_no_trigger

precision_micro: 0.7298850574712641
recall_micro: 0.618004866180048
f1_micro: 0.6693017127799731

Dygie ++

The values for AR, Cl, MRE, CRE und BRE correspond to the values of Dygie++ in Table 2.

The F1 scores for AR_no_trigger und MRE_no_trigger correspond to the values of Dygie++ with Trigger in Table 3

sh scripts/evaluate_model.sh models/dygiepp.tar.gz evaluations/dygiepp mare.evaluation.mock_model.DygieppMockModel mare

The result shoud be

EVALUATION RESULTS FOR MRE

precision_micro: 0.47154471544715404
recall_micro: 0.453125
f1_micro: 0.46215139442231

EVALUATION RESULTS FOR Cl

precision_micro: 0.7723577235772351
recall_micro: 0.7421875
f1_micro: 0.7569721115537841

EVALUATION RESULTS FOR CRE

precision_micro: 0.260162601626016
recall_micro: 0.25
f1_micro: 0.254980079681274

EVALUATION RESULTS FOR AR

precision_micro: 0.630434782608695
recall_micro: 0.651685393258427
f1_micro: 0.6408839779005521

EVALUATION RESULTS FOR BRE

precision_micro: 0.550561797752809
recall_micro: 0.51578947368421
f1_micro: 0.5326086956521741

EVALUATION RESULTS FOR MRE_no_trigger

precision_micro: 0.536585365853658
recall_micro: 0.515625
f1_micro: 0.525896414342629

EVALUATION RESULTS FOR AR_no_trigger

precision_micro: 0.596810933940774
recall_micro: 0.6374695863746951
f1_micro: 0.616470588235294

SpERT (SpART = SpERT with AllenNLP)

The value for BRE corresponds to the values of SpERT in Table 2.

sh scripts/evaluate_model.sh models/spart.tar.gz evaluations/spert spart spart

The result shoud be

EVALUATION RESULTS FOR MRE

precision_micro: 0.43269230769230704
recall_micro: 0.3515625
f1_micro: 0.387931034482758

EVALUATION RESULTS FOR Cl

precision_micro: 0.596153846153846
recall_micro: 0.484375
f1_micro: 0.5344827586206891

EVALUATION RESULTS FOR CRE

precision_micro: 0.08653846153846101
recall_micro: 0.0703125
f1_micro: 0.077586206896551

EVALUATION RESULTS FOR AR

precision_micro: 0.519230769230769
recall_micro: 0.202247191011235
f1_micro: 0.2911051212938

EVALUATION RESULTS FOR BRE

precision_micro: 0.573333333333333
recall_micro: 0.45263157894736805
f1_micro: 0.505882352941176

EVALUATION RESULTS FOR MRE_no_trigger

precision_micro: 0.48076923076923006
recall_micro: 0.390625
f1_micro: 0.43103448275862005

EVALUATION RESULTS FOR AR_no_trigger

precision_micro: 0.528
recall_micro: 0.16058394160583903
f1_micro: 0.246268656716417

Sequence Tagging Baseline

The values for AR, Cl, MRE, CRE und BRE correspond to the values of MARE Baseline in Table 2.

sh scripts/evaluate_model.sh models/sequence_tagging_baseline.tar.gz evaluations/seq_tag_baseline seq_lab_elmo_pred mare

The result shoud be

EVALUATION RESULTS FOR MRE

precision_micro: 0.396825396825396
recall_micro: 0.390625
f1_micro: 0.39370078740157405

EVALUATION RESULTS FOR Cl

precision_micro: 0.682539682539682
recall_micro: 0.671875
f1_micro: 0.677165354330708

EVALUATION RESULTS FOR CRE

precision_micro: 0.26190476190476103
recall_micro: 0.2578125
f1_micro: 0.259842519685039

EVALUATION RESULTS FOR AR

precision_micro: 0.6591422121896161
recall_micro: 0.5468164794007491
f1_micro: 0.597748208802456

EVALUATION RESULTS FOR BRE

precision_micro: 0.40206185567010305
recall_micro: 0.410526315789473
f1_micro: 0.40625000000000006

EVALUATION RESULTS FOR MRE_no_trigger

precision_micro: 0.42857142857142805
recall_micro: 0.421875
f1_micro: 0.42519685039370003

EVALUATION RESULTS FOR AR_no_trigger

precision_micro: 0.6296296296296291
recall_micro: 0.49635036496350304
f1_micro: 0.5551020408163261

Sequence Tagging No Trigger

The F1 scores for AR_no_trigger und MRE_no_trigger correspond to the values of Seq. Tag. without Trigger in Table 3

Change the include_trigger Parameter in mare/seq_lab_elmo_pred.py to False.

sh scripts/evaluate_model.sh models/sequence_no_trigger.tar.gz evaluations/seq_tag_no_trig seq_lab_elmo_pred_no_trig mare

The result shoud be


EVALUATION RESULTS FOR MRE

precision_micro: 0.056
recall_micro: 0.0546875
f1_micro: 0.055335968379446

EVALUATION RESULTS FOR Cl

precision_micro: 0.728
recall_micro: 0.7109375
f1_micro: 0.7193675889328061

EVALUATION RESULTS FOR CRE

precision_micro: 0.048
recall_micro: 0.046875
f1_micro: 0.047430830039525

EVALUATION RESULTS FOR AR

precision_micro: 0.662337662337662
recall_micro: 0.47752808988764006
f1_micro: 0.554951033732317

EVALUATION RESULTS FOR BRE

precision_micro: 0.07865168539325801
recall_micro: 0.073684210526315
f1_micro: 0.07608695652173901

EVALUATION RESULTS FOR MRE_no_trigger

precision_micro: 0.512
recall_micro: 0.5
f1_micro: 0.50592885375494

EVALUATION RESULTS FOR AR_no_trigger

precision_micro: 0.662337662337662
recall_micro: 0.620437956204379
f1_micro: 0.6407035175879391

Span Labeling No Trigger

The F1 scores for AR_no_trigger und MRE_no_trigger correspond to the values of Span Lab. without Trigger in Table 3

sh scripts/evaluate_model.sh models/span_based_no_trigger_local.tar.gz evaluations/span_lab_no_trig mare.span_based_precidtor.SpanBasedPredictor mare

The result shoud be

EVALUATION RESULTS FOR MRE

precision_micro: 0.07563025210084001
recall_micro: 0.0703125
f1_micro: 0.072874493927125

EVALUATION RESULTS FOR Cl

precision_micro: 0.789915966386554
recall_micro: 0.734375
f1_micro: 0.761133603238866

EVALUATION RESULTS FOR CRE

precision_micro: 0.067226890756302
recall_micro: 0.0625
f1_micro: 0.064777327935222

EVALUATION RESULTS FOR AR

precision_micro: 0.72
recall_micro: 0.47191011235955005
f1_micro: 0.570135746606334

EVALUATION RESULTS FOR BRE

precision_micro: 0.103448275862068
recall_micro: 0.09473684210526301
f1_micro: 0.09890109890109801

EVALUATION RESULTS FOR MRE_no_trigger

precision_micro: 0.5630252100840331
recall_micro: 0.5234375
f1_micro: 0.542510121457489

EVALUATION RESULTS FOR AR_no_trigger

precision_micro: 0.72
recall_micro: 0.613138686131386
f1_micro: 0.6622864651773981

This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022