Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Overview

Yolov5+SlowFast: Realtime Action Detection

A realtime action detection frame work based on PytorchVideo.

Here are some details about our modification:

  • we choose yolov5 as an object detector instead of detectron2, it is faster and more convenient
  • we use a tracker(deepsort) to allocate action labels to all objects(with same ids) in different frames
  • our processing speed reached 24.2 FPS at 30 inference barch size (on a single RTX 2080Ti GPU)

Relevant infomation: FAIR/PytorchVideo; Ultralytics/Yolov5

Demo comparison betwween original(<-left) and ours(->right).

Installation

  1. create a new python environment:

    conda create -n env_name python=3.7.11
    
  2. install requiments:

    pip install -r requirements.txt
    
  3. download weights file(ckpt.t7) from [deepsort] to this folder:

    ./deep_sort/deep_sort/deep/checkpoint/
    
  4. test on your video:

    python yolo_slowfast.py --input {path to your video}
    

    The first time to execute this command may take some times to download the yolov5 code and it's weights file from torch.hub, keep your network connected.

References

Thanks for these great works:

[1] Ultralytics/Yolov5

[2] ZQPei/deepsort

[3] FAIR/PytorchVideo

[2] AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions. paper

[3] SlowFast Networks for Video Recognition. paper

Citation

If you find our work useful, please cite as follow:

{   yolo_slowfast,
    author = {Wu Fan},
    title = { A realtime action detection frame work based on PytorchVideo},
    year = {2021},
    url = {\url{https://github.com/wufan-tb/gmm_dae}}
}
Owner
WuFan
WuFan
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
๐Ÿš€ An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

๐Ÿš€ An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
YOLO-v5 ๊ธฐ๋ฐ˜ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ์˜ ์˜์ƒ์„ ํ™œ์šฉํ•ด ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉฐ ์ฃผํ–‰ํ•˜๋Š” Adaptive Cruise Control ๊ธฐ๋Šฅ ๊ตฌํ˜„

์ž์œจ ์ฃผํ–‰์ฐจ์˜ ์˜์ƒ ๊ธฐ๋ฐ˜ ์ฐจ๊ฐ„๊ฑฐ๋ฆฌ ์œ ์ง€ ๊ฐœ๋ฐœ Table of Contents ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ ์ฃผ์š” ๊ธฐ๋Šฅ ์‹œ์Šคํ…œ ๊ตฌ์กฐ ๋””๋ ‰ํ† ๋ฆฌ ๊ตฌ์กฐ ๊ฒฐ๊ณผ ์‹คํ–‰ ๋ฐฉ๋ฒ• ์ฐธ์กฐ ํŒ€์› ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ YOLO-v5 ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ์˜ ์˜์ƒ์„ ํ™œ์šฉํ•ด ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉฐ ์ฃผํ–‰ํ•˜๋Š” Adap

14 Jun 29, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos ๐Ÿ”ฅ blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022