Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Overview

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision

1. Framework

Figure 1: Illustration of the proposed joint learning framework.

2. Results

Figure 2: Example of data pairs of ZRR and SR-RAW datasets, where clear spatial misalignment can be observed with the reference line. With such inaccurately aligned training data, PyNet [22] and Zhang et al. [62] are prone to generating blurry results with spatial misalignment, while our results are well aligned with the input.

3. Preparation

  • 3.1 Prerequisites

    • PyTorch (v1.6)
    • Python 3.x, with OpenCV, Numpy, CuPy, Pillow and tqdm, and tensorboardX is used for visualization
  • 3.2 Dataset - Zurich RAW to RGB dataset and SR-RAW Dataset are used for experiments.

4. Quick Start

We show some exemplar commands here for better introduction.

4.1 Training

  • Zurich RAW to RGB dataset

    python train.py \
    --dataset_name eth    --model zrrjoint    --name $name          --gcm_coord True  \
    --ispnet_coord True   --niter 80          --lr_decay_iters 40   --save_imgs False \
    --batch_size 16       --print_freq 300    --calc_psnr True      --lr 1e-4   -j 8  \
    --dataroot /data/dataset/Zurich-RAW-to-DSLR 
  • SR-RAW Dataset

    To be continued...

4.2 Testing

  • The pre-trained models will be released soon.

  • Zurich RAW to RGB dataset

    python test.py \
    --model zrrjoint    --name zrrjoint    --dataset_name eth   --ispnet_coord True  --alignnet_coord True \
    --load_iter 80      --save_imgs True  --calc_psnr True      --gpu_id 0           --visual_full_imgs False \
    --dataroot /data/dataset/Zurich-RAW-to-DSLR
  • SR-RAW Dataset

    To be continued...

4.3 Note

  • You can specify which GPU to use by --gpu_ids, e.g., --gpu_ids 0,1, --gpu_ids 3, --gpu_ids -1 (for CPU mode). In the default setting, all GPUs are used.
  • You can refer to options for more arguments.

5. Citation

If you find it useful in your research, please consider citing:

@inproceedings{RAW-to-sRGB,
    title={Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision},
    author={Zhang, Zhilu and Wang, Haolin and Liu, Ming and Wang, Ruohao and Zuo, Wangmeng and Zhang, Jiawei},
    booktitle={ICCV},
    year={2021}
}

6. Acknowledgement

This repo is built upon the framework of CycleGAN, and we borrow some code from PyNet, Zoom-Learn-Zoom, PWC-Net and AdaDSR, thanks for their excellent work!

Owner
Zhilu Zhang
Harbin Institute of Technology
Zhilu Zhang
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022