The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Overview

Climatehack

This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992.

Final Leaderboard

An overview of our approach can be found here.

Example predictions:

Setup

conda env create -f environment.yaml
conda activate climatehack
python -m ipykernel install --user --name=climatehack

First, download data by running data/download_data.ipynb. Alternatively, you can find preprocessed data files here. Save them into the data folder. We used train.npz and test.npz. They consist of data temporally cropped from 10am to 4pm UK time across the entire dataset. You could also use data_good_sun_2020.npz and data_good_sun_2021.npz, which consist of all samples where the sun elevation is at least 10 degrees. Because these crops produced datasets that could fit in-memory, all our dataloaders work in-memory.

Best Submission

Our best submission earned scores exceeding 0.85 on the Climatehack leaderboard. It is relatively simple and uses the fastai library to pick a base model, optimizer, and learning rate scheduler. After some experimentation, we chose xse_resnext50_deeper. We turned it into a UNET and trained it. More info is in the slides.

To train:

cd best-submission
bash train.sh

To submit, first move the trained model xse_resnext50_deeper.pth into best-submission/submission.

cd best-submission
python doxa_cli.py user login
bash submit.sh

Also, check out best-submission/test_and_visualize.ipynb to test the model and visualize results in a nice animation. This is how we produced the animations found in figs/model_predictions.gif.

Experiments

We conducted several experiments that showed improvements on a strong baseline. The baseline was OpenClimateFix's skillful nowcasting repo, which itself is a implementation of Deepmind's precipitation forecasting GAN. This baseline is more-or-less copied to experiments/dgmr-original. One important difference is that instead of training the GAN, we just train the generator. This was doing well for us and training the GAN had much slower convergence. This baseline will actually train to a score greater than 0.8 on the Climatehack leaderboard. We didn't have time to properly test these experiments on top of our best model, but we suspect they would improve results. The experiments are summarized below:

Experiment Description Results
DCT-Trick Inspired by this, we use the DCT to turn 128x128 -> 64x16x16 and IDCT to turn 64x16x16 -> 128x128. This leads to a shallower network that is autoregressive at fewer spatial resolutions. We believe this is the first time this has been done with UNETs. A fast implementation is in common/utils.py:create_conv_dct_filter and common/utils.py:get_idct_filter. 1.8-2x speedup, small <0.005 performance drop
Denoising We noticed a lot of blocky artifacts in predictions. These artifacts are reminiscent of JPEG/H.264 compression artifacts. We show a comparison of these artifacts in the slides. We found a pretrained neural network to fix them. This can definitely be done better, but we show a proof-of-concept. No performance drop, small visual improvement. The slides have an example.
CoordConv Meteorological phenomenon are correlated with geographic coordinates. We add 2 input channels for the geographic coordinates in OSGB form. +0.0072 MS-SSIM improvement
Optical Flow Optical flow does well for the first few timesteps. We add 2 input channels for the optical flow vectors. +0.0034 MS-SSIM improvement

The folder experiments/climatehack-submission was used to submit these experiments.

cd experiments/climatehack-submission
python doxa_cli.py user login
bash submit.sh

Use experiments/test_and_visualize.ipynb to test the model and visualize results in a nice animation.

Owner
Jatin Mathur
Undergrad at UIUC. Currently working on satellites with LASSI (https://lassiaero.web.illinois.edu/). Previously @astranis, @robinhood, @fractal, @ncsa
Jatin Mathur
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022