Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Overview

Improved Few-Shot Visual Classification

This repository contains source codes for the following papers:

The code base has been authored by Peyman Bateni, Jarred Barber, Raghav Goyal, Vaden Masrani, Dr. Jan-Willemn van de Meent, Dr. Leonid Sigal and Dr. Frank Wood. The source codes build on the original code base for CNAPS authored by Dr. John Bronskill, Jonathan Gordon, James Reqeima, Dr. Sebastian Nowozin, and Dr. Richard E. Turner. We would like to thank them for their help, support and early sharing of their work. To see the original CNAPS repository, visit https://github.com/cambridge-mlg/cnaps.

Simple CNAPS

Simple CNAPS proposes the use of hierarchically regularized cluster means and covariance estimates within a Mahalanobis-distance based classifer for improved few-shot classification accuracy. This method incorporates said classifier within the same neural adaptive feature extractor as CNAPS. For more details, please refer to our paper on Simple CNAPS: Improved Few-Shot Visual Classification. The source code for this paper has been provided in the simple-cnaps-src directory. To reproduce our results, please refer to the README.md file within that folder.

Global Meta-Dataset Rank (Simple CNAPS): https://github.com/google-research/meta-dataset#training-on-all-datasets

Global Mini-ImageNet Rank (Simple CNAPS):

PWC PWC PWC PWC

Global Tiered-ImageNet Rank (Simple CNAPS):

PWC PWC PWC PWC

Transductive CNAPS

Transductive CNAPS extends the Simple CNAPS framework to the transductive few-shot learning setting where all query examples are provided at once. This method uses a two-step transductive task-encoder for adapting the feature extractor as well as a soft k-means cluster refinement procedure, resulting in better test-time accuracy. For additional details, please refer to our paper on Transductive CNAPS: Enhancing Few-Shot Image Classification with Unlabelled Examples. The source code for this work is provided under the transductive-cnaps-src directory. To reproduce our results, please refer to the README.md file within this folder.

Global Meta-Dataset Rank (Transductive CNAPS): https://github.com/google-research/meta-dataset#training-on-all-datasets

Global Mini-ImageNet Rank (Transductive CNAPS):

PWC PWC PWC PWC

Global Tiered-ImageNet Rank (Transductive CNAPS):

PWC PWC PWC PWC

Active and Continual Learning

We additionally evaluate both methods within the paradigms of "out of the box" active and continual learning. These settings were first proposed by Requeima et al., and studies how well few-shot classifiers, trained for few-shot learning, can be deployed for active and continual learning without any problem-specific finetuning or training. For additional details on our active and continual learning experiments and algorithms, please refer to our latest paper: Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning. For code and instructions to reproduce the experiments reported, please refer to the active-learning and continual-learning folders.

Meta-Dataset Results

| Dataset | Simple CNAPS | Simple CNAPS | Transductive CNAPS | Transductive CNAPS |

--shuffle_dataset False False True False True
In-Domain Datasets --- --- --- ---
ILSVRC 58.6±1.1 56.5±1.1 58.8±1.1 57.9±1.1
Omniglot 91.7±0.6 91.9±0.6 93.9±0.4 94.3±0.4
Aircraft 82.4±0.7 83.8±0.6 84.1±0.6 84.7±0.5
Birds 74.9±0.8 76.1±0.9 76.8±0.8 78.8±0.7
Textures 67.8±0.8 70.0±0.8 69.0±0.8 66.2±0.8
Quick Draw 77.7±0.7 78.3±0.7 78.6±0.7 77.9±0.6
Fungi 46.9±1.0 49.1±1.2 48.8±1.1 48.9±1.2
VGG Flower 90.7±0.5 91.3±0.6 91.6±0.4 92.3±0.4
Out-of-Domain Datasets --- --- --- ---
Traffic Signs 73.5±0.7 59.2±1.0 76.1±0.7 59.7±1.1
MSCOCO 46.2±1.1 42.4±1.1 48.7±1.0 42.5±1.1
MNIST 93.9±0.4 94.3±0.4 95.7±0.3 94.7±0.3
CIFAR10 74.3±0.7 72.0±0.8 75.7±0.7 73.6±0.7
CIFAR100 60.5±1.0 60.9±1.1 62.9±1.0 61.8±1.0
--- --- --- --- ---
In-Domain Average Accuracy 73.8±0.8 74.6±0.8 75.2±0.8 75.1±0.8
Out-of-Domain Average Accuracy 69.7±0.8 65.8±0.8 71.8±0.8 66.5±0.8
Overall Average Accuracy 72.2±0.8 71.2±0.8 73.9±0.8 71.8±0.8

Mini-ImageNet Results

Setup 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Simple CNAPS 53.2±0.9 70.8±0.7 37.1±0.5 56.7±0.5
Transductive CNAPS 55.6±0.9 73.1±0.7 42.8±0.7 59.6±0.5
--- --- --- --- ---
Simple CNAPS + FETI 77.4±0.8 90.3±0.4 63.5±0.6 83.1±0.4
Transductive CNAPS + FETI 79.9±0.8 91.5±0.4 68.5±0.6 85.9±0.3

Tiered-ImageNet Results

Setup 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Simple CNAPS 63.0±1.0 80.0±0.8 48.1±0.7 70.2±0.6
Transductive CNAPS 65.9±1.0 81.8±0.7 54.6±0.8 72.5±0.6
--- --- --- --- ---
Simple CNAPS + FETI 71.4±1.0 86.0±0.6 57.1±0.7 78.5±0.5
Transductive CNAPS + FETI 73.8±1.0 87.7±0.6 65.1±0.8 80.6±0.5

Citation

We hope you have found our code base helpful! If you use this repository, please cite our papers:

@InProceedings{Bateni2020_SimpleCNAPS,
    author = {Bateni, Peyman and Goyal, Raghav and Masrani, Vaden and Wood, Frank and Sigal, Leonid},
    title = {Improved Few-Shot Visual Classification},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}

@InProceedings{Bateni2022_TransductiveCNAPS,
    author    = {Bateni, Peyman and Barber, Jarred and van de Meent, Jan-Willem and Wood, Frank},
    title     = {Enhancing Few-Shot Image Classification With Unlabelled Examples},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2022},
    pages     = {2796-2805}
}

@misc{Bateni2022_BeyondSimpleMetaLearning,
    title={Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning}, 
    author={Peyman Bateni and Jarred Barber and Raghav Goyal and Vaden Masrani and Jan-Willem van de Meent and Leonid Sigal and Frank Wood},
    year={2022},
    eprint={2201.05151},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

**If you would like to ask any questions or reach out regarding any of the papers, please email me directly at [email protected] (my cs.ubc.ca email may have expired by the time you are emailing as I have graduated!).

Owner
PLAI Group at UBC
PLAI Group at UBC
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022