T2F: text to face generation using Deep Learning

Overview

[NEW]

T2F - 2.0 Teaser (coming soon ...)

2.0 Teaser

Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN for the image generation module instead of ProGAN. Please refer link for more info about MSG-GAN. This update to the repository will be comeing soon 👍 .

T2F

Text-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions.
The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper.

Some Examples:

Examples

Architecture:

Architecture Diagram

The textual description is encoded into a summary vector using an LSTM network. The summary vector, i.e. Embedding (psy_t) as shown in the diagram is passed through the Conditioning Augmentation block (a single linear layer) to obtain the textual part of the latent vector (uses VAE like reparameterization technique) for the GAN as input. The second part of the latent vector is random gaussian noise. The latent vector so produced is fed to the generator part of the GAN, while the embedding is fed to the final layer of the discriminator for conditional distribution matching. The training of the GAN progresses exactly as mentioned in the ProGAN paper; i.e. layer by layer at increasing spatial resolutions. The new layer is introduced using the fade-in technique to avoid destroying previous learning.

Running the code:

The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.

Code organization:
configs: contains the configuration files for training the network. (You can use any one, or create your own)
data_processing: package containing data processing and loading modules
networks: package contains network implementation
processed_annotations: directory stores output of running process_text_annotations.py script
process_text_annotations.py: processes the captions and stores output in processed_annotations/ directory. (no need to run this script; the pickle file is included in the repo.)
train_network.py: script for running the training the network

Sample configuration:

# All paths to different required data objects
images_dir: "../data/LFW/lfw"
processed_text_file: "processed_annotations/processed_text.pkl"
log_dir: "training_runs/11/losses/"
sample_dir: "training_runs/11/generated_samples/"
save_dir: "training_runs/11/saved_models/"

# Hyperparameters for the Model
captions_length: 100
img_dims:
  - 64
  - 64

# LSTM hyperparameters
embedding_size: 128
hidden_size: 256
num_layers: 3  # number of LSTM cells in the encoder network

# Conditioning Augmentation hyperparameters
ca_out_size: 178

# Pro GAN hyperparameters
depth: 5
latent_size: 256
learning_rate: 0.001
beta_1: 0
beta_2: 0
eps: 0.00000001
drift: 0.001
n_critic: 1

# Training hyperparameters:
epochs:
  - 160
  - 80
  - 40
  - 20
  - 10

# % of epochs for fading in the new layer
fade_in_percentage:
  - 85
  - 85
  - 85
  - 85
  - 85

batch_sizes:
  - 16
  - 16
  - 16
  - 16
  - 16

num_workers: 3
feedback_factor: 7  # number of logs generated per epoch
checkpoint_factor: 2  # save the models after these many epochs
use_matching_aware_discriminator: True  # use the matching aware discriminator

Use the requirements.txt to install all the dependencies for the project.

$ workon [your virtual environment]
$ pip install -r requirements.txt

Sample run:

$ mkdir training_runs
$ mkdir training_runs/generated_samples training_runs/losses training_runs/saved_models
$ train_network.py --config=configs/11.comf

Other links:

blog: https://medium.com/@animeshsk3/t2f-text-to-face-generation-using-deep-learning-b3b6ba5a5a93
training_time_lapse video: https://www.youtube.com/watch?v=NO_l87rPDb8
ProGAN package (Seperate library): https://github.com/akanimax/pro_gan_pytorch

#TODO:

1.) Create a simple demo.py for running inference on the trained models

Owner
Animesh Karnewar
PhD @smartgeometry-ucl | Marie Curie Fellow for PRIME-ITN | Interested in: 3D deep learning, generative modelling, computer graphics, geometric deep learning
Animesh Karnewar
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023