E-RAFT: Dense Optical Flow from Event Cameras

Related tags

Deep LearningE-RAFT
Overview

E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT

This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Millhäusler, Daniel Gehrig and Davide Scaramuzza.

We also introduce DSEC-Flow (download here), the optical flow extension of the DSEC dataset. We are also hosting an automatic evaluation server and a public benchmark!

Visit our project webpage or download the paper directly here for more details. If you use any of this code, please cite the following publication:

@InProceedings{Gehrig3dv2021,
  author = {Mathias Gehrig and Mario Millh\"ausler and Daniel Gehrig and Davide Scaramuzza},
  title = {E-RAFT: Dense Optical Flow from Event Cameras},
  booktitle = {International Conference on 3D Vision (3DV)},
  year = {2021}
}

Download

Download the network checkpoints and place them in the folder checkpoints/:

Checkpoint trained on DSEC

Checkpoint trained on MVSEC 20 Hz

Checkpoint trained on MVSEC 45 Hz

Installation

Please install conda. Then, create new conda environment with python3.7 and all dependencies by running

conda env create --file environment.yml

Datasets

DSEC

The DSEC dataset for optical flow can be downloaded here. We prepared a script download_dsec_test.py for your convenience. It downloads the dataset directly into the OUTPUT_DIRECTORY with the expected directory structure.

download_dsec_test.py OUTPUT_DIRECTORY

MVSEC

To use the MVSEC dataset for our approach, it needs to be pre-processed into the right format. For your convenience, we provide the pre-processed dataset here:

MVSEC Outdoor Day 1 for 20 Hz evaluation

MVSEC Outdoor Day 1 for 45 Hz evaluation

Experiments

DSEC Dataset

For the evaluation of our method with warm-starting, execute the following command:

python3 main.py --path 
   

   

For the evaluation of our method without warm-starting, execute the following command:

python3 main.py --path 
   
     --type standard

   

MVSEC Dataset

For the evaluation of our method with warm-starting, trained on 20Hz MVSEC data, execute the following command:

python3 main.py --path 
   
     --dataset mvsec --frequency 20

   

For the evaluation of our method with warm-starting, trained on 45Hz MVSEC data, execute the following command:

python3 main.py --path 
   
     --dataset mvsec --frequency 45

   

Arguments

--path : Path where you stored the dataset

--dataset : Which dataset to use: ([dsec]/mvsec)

--type : Evaluation type ([warm_start]/standard)

--frequency : Evaluation frequency of MVSEC dataset ([20]/45) Hz

--visualize : Provide this argument s.t. DSEC results are visualized. MVSEC experiments are always visualized.

--num_workers : How many sub-processes to use for data loading (default=0)

Owner
Robotics and Perception Group
Robotics and Perception Group
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023