Continual World is a benchmark for continual reinforcement learning

Overview

Continual World

Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld.

The core of our benchmark is CW20 sequence, in which 20 tasks are run, each with budget of 1M steps.

We provide the complete source code for the benchmark together with the tested algorithms implementations and code for producing result tables and plots.

See also the paper and the website.

CW20 sequence

Installation

You can either install directly in Python environment (like virtualenv or conda), or build containers -- Docker or Singularity.

Standard installation (directly in environment)

First, you'll need MuJoCo simulator. Please follow the instructions from mujoco_py package. As MuJoCo has been made freely available, you can obtain a free license here.

Next, go to the main directory of this repo and run

pip install .

Alternatively, if you want to install in editable mode, run

pip install -e .

Docker image

  • To build the image with continualworld package installed inside, run docker build . -f assets/Dockerfile -t continualworld

  • To build the image WITHOUT the continualworld package but with all the dependencies installed, run docker build . -f assets/Dockerfile -t continualworld --build-arg INSTALL_CW_PACKAGE=false

When the image is ready, you can run

docker run -it continualworld bash

to get inside the image.

Singularity image

  • To build the image with continualworld package installed inside, run singularity build continualworld.sif assets/singularity.def

  • To build the image WITHOUT the continualworld package but with all the dependencies installed, run singularity build continualworld.sif assets/singularity_only_deps.def

When the image is ready, you can run

singularity shell continualworld.sif

to get inside the image.

Running

You can run single task, continual learning or multi-task learning experiments with run_single.py, run_cl.py , run_mt.py scripts, respectively.

To see available script arguments, run with --help option, e.g.

python3 run_single.py --help

Examples

Below are given example commands that will run experiments with a very limited scale.

Single task

python3 run_single.py --seed 0 --steps 2e3 --log_every 250 --task hammer-v1 --logger_output tsv tensorboard

Continual learning

python3 run_cl.py --seed 0 --steps_per_task 2e3 --log_every 250 --tasks CW20 --cl_method ewc --cl_reg_coef 1e4 --logger_output tsv tensorboard

Multi-task learning

python3 run_mt.py --seed 0 --steps_per_task 2e3 --log_every 250 --tasks CW10 --use_popart True --logger_output tsv tensorboard

Reproducing the results from the paper

Commands to run experiments that reproduce main results from the paper can be found in examples/paper_cl_experiments.sh, examples/paper_mt_experiments.sh and examples/paper_single_experiments.sh. Because of number of different runs that these files contain, it is infeasible to just run it in sequential manner. We hope though that these files will be helpful because they precisely specify what needs to be run.

After the logs from runs are gathered, you can produce tables and plots - see the section below.

Producing result tables and plots

After you've run experiments and you have saved logs, you can run the script to produce result tables and plots:

python produce_results.py --cl_logs examples/logs/cl --mtl_logs examples/logs/mtl --baseline_logs examples/logs/baseline

In this command, respective arguments should be replaced for paths to directories containing logs from continual learning experiments, multi-task experiments and baseline (single-task) experiments. Each of these should be a directory inside which there are multiple experiments, for different methods and/or seeds. You can see the directory structure in the example logs included in the command above.

Results will be produced and saved on default to the results directory.

Alternatively, check out nb_produce_results.ipynb notebook to see plots and tables in the notebook.

Download our saved logs and produce results

You can download logs of experiments to reproduce paper's results from here. Then unzip the file and run

python produce_results.py --cl_logs saved_logs/cl --mtl_logs saved_logs/mt --baseline_logs saved_logs/single

to produce tables and plots.

As a result, a csv file with results will be produced, as well as the plots, like this one (and more!):

average performance

Full output can be found here.

Acknowledgements

Continual World heavily relies on MetaWorld.

The implementation of SAC used in our code comes from Spinning Up in Deep RL.

Our research was supported by the PLGrid infrastructure.

Our experiments were managed using Neptune.

[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021