PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Overview

Hand Mesh Reconstruction

Introduction

This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Update

  • 2021-12.7, Add MobRecon demo.
  • 2021-6-10, Add Human3.6M dataset.
  • 2021-5-20, Add CMR-G model.

Features

  • SpiralNet++
  • Sub-pose aggregation
  • Adaptive 2D-1D registration for mesh-image alignment
  • DenseStack for 2D encoding
  • Feature lifting with MapReg and PVL
  • DSConv as an efficient mesh operator
  • MobRecon training with consistency learning and complement data

Install

  • Environment

    conda create -n handmesh python=3.6
    conda activate handmesh
    
  • Please follow official suggestions to install pytorch and torchvision. We use pytorch=1.7.1, torchvision=0.8.2

  • Requirements

    pip install -r requirements.txt
    

    If you have difficulty in installing torch_sparse etc., please use whl file from here.

  • MPI-IS Mesh: We suggest to install this library from the source

  • Download the files you need from Google drive.

Run a demo

  • Prepare pre-trained models as

    out/Human36M/cmr_g/checkpoints/cmr_g_res18_human36m.pt
    out/FreiHAND/cmr_g/checkpoints/cmr_g_res18_moredata.pt
    out/FreiHAND/cmr_sg/checkpoints/cmr_sg_res18_freihand.pt
    out/FreiHAND/cmr_pg/checkpoints/cmr_pg_res18_freihand.pt  
    out/FreiHAND/mobrecon/checkpoints/mobrecon_densestack_dsconv.pt  
    
  • Run

    ./scripts/demo_cmr.sh
    ./scripts/demo_mobrecon.sh
    

    The prediction results will be saved in output directory, e.g., out/FreiHAND/mobrecon/demo.

  • Explaination of the output

    • In an JPEG file (e.g., 000_plot.jpg), we show silhouette, 2D pose, projection of mesh, camera-space mesh and pose
    • As for camera-space information, we use a red rectangle to indicate the camera position, or the image plane. The unit is meter.
    • If you run the demo, you can also obtain a PLY file (e.g., 000_mesh.ply).
      • This file is a 3D model of the hand.
      • You can open it with corresponding software (e.g., Preview in Mac).
      • Here, you can get more 3D details through rotation and zoom in.

Dataset

FreiHAND

  • Please download FreiHAND dataset from this link, and create a soft link in data, i.e., data/FreiHAND.
  • Download mesh GT file freihand_train_mesh.zip, and unzip it under data/FreiHAND/training

Human3.6M

  • The official data is now not avaliable. Please follow I2L repo to download it.
  • Download silhouette GT file h36m_mask.zip, and unzip it under data/Human36M.

Data dir

${ROOT}  
|-- data  
|   |-- FreiHAND
|   |   |-- training
|   |   |   |-- rgb
|   |   |   |-- mask
|   |   |   |-- mesh
|   |   |-- evaluation
|   |   |   |-- rgb
|   |   |-- evaluation_K.json
|   |   |-- evaluation_scals.json
|   |   |-- training_K.json
|   |   |-- training_mano.json
|   |   |-- training_xyz.json
|   |-- Human3.6M
|   |   |-- images
|   |   |-- mask
|   |   |-- annotations

Evaluation

FreiHAND

./scripts/eval_cmr_freihand.sh
./scripts/eval_mobrecon_freihand.sh
  • JSON file will be saved as out/FreiHAND/cmr_sg/cmr_sg.josn. You can submmit this file to the official server for evaluation.

Human3.6M

./scripts/eval_cmr_human36m.sh

Performance on PA-MPJPE (mm)

We re-produce the following results after code re-organization.

Model / Dataset FreiHAND Human3.6M (w/o COCO)
CMR-G-ResNet18 7.6 -
CMR-SG-ResNet18 7.5 -
CMR-PG-ResNet18 7.5 50.0
MobRecon-DenseStack 6.9 -

Training

./scripts/train_cmr_freihand.sh
./scripts/train_cmr_human36m.sh

Reference

@inproceedings{bib:CMR,
  title={Camera-Space Hand Mesh Recovery via Semantic Aggregationand Adaptive 2D-1D Registration},
  author={Chen, Xingyu and Liu, Yufeng and Ma, Chongyang and Chang, Jianlong and Wang, Huayan and Chen, Tian and Guo, Xiaoyan and Wan, Pengfei and Zheng, Wen},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
@article{bib:MobRecon,
  title={MobRecon: Mobile-Friendly Hand Mesh Reconstruction from Monocular Image},
  author={Chen, Xingyu and Liu, Yufeng and Dong Yajiao and Zhang, Xiong and Ma, Chongyang and Xiong, Yanmin and Zhang, Yuan and Guo, Xiaoyan},
  journal={arXiv:2112.02753},
  year={2021}
}
}

Acknowledgement

Our implementation of SpiralConv is based on spiralnet_plus.

Owner
Xingyu Chen
Xingyu Chen
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021