(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Overview

Energy-based Latent Aligner for Incremental Learning

Accepted to CVPR 2022

paper

We illustrate an Incremental Learning model trained on a continuum of tasks in the top part of the figure. While learning the current task , the latent representation of Task data gets disturbed, as shown by red arrows. ELI learns an energy manifold, and uses it to counteract this inherent representational shift, as illustrated by green arrows, thereby alleviating forgetting.

Overview

In this work, we propose ELI: Energy-based Latent Aligner for Incremental Learning, which:

  • Learns an energy manifold for the latent representations such that previous task latents will have low energy and the current task latents have high energy values.
  • This learned manifold is used to counter the representational shift that happens during incremental learning.

The implicit regularization that is offered by our proposed methodology can be used as a plug-and-play module in existing incremental learning methodologies for classification and object-detection.

Toy Experiment

A key hypothesis that we base our methodology is that while learning a new task, the latent representations will get disturbed, which will in-turn cause catastrophic forgetting of the previous task, and that an energy manifold can be used to align these latents, such that it alleviates forgetting.

Here, we illustrate a proof-of-concept that our hypothesis is indeed true. We consider a two task experiment on MNIST, where each task contains a subset of classes: = {0, 1, 2, 3, 4}, = {5, 6, 7, 8, 9}.

After learning the second task, the accuracy on test set drops to 20.88%, while experimenting with a 32 dimensional latent space. The latent aligner in ELI provides 62.56% improvement in test accuracy to 83.44%. The visualization of a 512 dimensional latent space after learning in sub-figure (c), indeed shows cluttering due to representational shift. ELI is able to align the latents as shown in sub-figure (d), which alleviates the drop in accuracy from 89.14% to 99.04%.

The code for these toy experiments are in:

Implicitly Recognizing and Aligning Important Latents

latents.mp4

Each row shows how latent dimension is updated by ELI. We see that different dimensions have different degrees of change, which is implicitly decided by our energy-based model.

Classification and Detection Experiments

Code and models for the classification and object detection experiments are inside the respective folders:

Each of these are independent repositories. Please consider them separate.

Citation

If you find our research useful, please consider citing us:

@inproceedings{joseph2022Energy,
  title={Energy-based Latent Aligner for Incremental Learning},
  author={Joseph, KJ and Khan, Salman and Khan, Fahad Shahbaz and Anwar, Rao Muhammad and Balasubramanian, Vineeth},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Our Related Work

  • Open-world Detection Transformer, CVPR 2022. Paper | Code
  • Towards Open World Object Detection, CVPR 2021. (Oral) Paper | Code
  • Incremental Object Detection via Meta-learning, TPAMI 2021. Paper | Code
Owner
Joseph K J
CS PhD Student at IIT-H
Joseph K J
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022