Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

Overview

Swin Transformer V2: Scaling Up Capacity and Resolution

Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution by Ze Liu, Han Hu et al. (Microsoft Research Asia).

This repository includes a pure PyTorch implementation of the Swin Transformer V2.

The official Swin Transformer V1 implementation is available here. Currently (10.01.2022), an official implementation of the Swin Transformer V2 is not publicly available.

Installation

You can simply install the Swin Transformer V2 implementation as a Python package by using pip.

pip install git+https://github.com/ChristophReich1996/Involution

Alternatively, you can clone the repository and use the implementation in swin_transformer_v2 directly in your project.

Usage

This implementation provides the configurations reported in the paper (SwinV2-T, SwinV2-S, etc.). You can build the model by calling the corresponding function. Please note that the Swin Transformer V2 (SwinTransformerV2 class) implementation returns the feature maps of each stage of the network (List[torch.Tensor]). If you want to use this implementation for image classification simply wrap this model and take the final feature map.

from swin_transformer_v2 import SwinTransformerV2

from swin_transformer_v2 import swin_transformer_v2_t, swin_transformer_v2_s, swin_transformer_v2_b, \
    swin_transformer_v2_l, swin_transformer_v2_h, swin_transformer_v2_g

# SwinV2-T
swin_transformer: SwinTransformerV2 = swin_transformer_v2_t(in_channels=3,
                                                            window_size=8,
                                                            input_resolution=(256, 256),
                                                            sequential_self_attention=False,
                                                            use_checkpoint=False)

If you want to change the resolution and/or the window size for fine-tuning or inference pleas use the update_resolution method.

# Change resolution and window size of the model
swin_transformer.update_resolution(new_window_size=16, new_input_resolution=(512, 512))

In case you want to use a custom configuration you can use the SwinTransformerV2 class. The constructor method takes the following parameters.

Parameter Description Type
in_channels Number of input channels int
depth Depth of the stage (number of layers) int
downscale If true input is downsampled (see Fig. 3 or V1 paper) bool
input_resolution Input resolution Tuple[int, int]
number_of_heads Number of attention heads to be utilized int
window_size Window size to be utilized int
shift_size Shifting size to be used int
ff_feature_ratio Ratio of the hidden dimension in the FFN to the input channels int
dropout Dropout in input mapping float
dropout_attention Dropout rate of attention map float
dropout_path Dropout in main path float
use_checkpoint If true checkpointing is utilized bool
sequential_self_attention If true sequential self-attention is performed bool

This file includes a full example how to use this implementation.

Disclaimer

This is a very experimental implementation based on the Swin Transformer V2 paper and the official implementation of the Swin Transformer V1. Since an official implementation of the Swin Transformer V2 is not yet published, it is not possible to say to which extent this implementation might differ from the original one. If you have any issues with this implementation please raise an issue.

Reference

@article{Liu2021,
    title={{Swin Transformer V2: Scaling Up Capacity and Resolution}},
    author={Liu, Ze and Hu, Han and Lin, Yutong and Yao, Zhuliang and Xie, Zhenda and Wei, Yixuan and Ning, Jia and Cao, 
            Yue and Zhang, Zheng and Dong, Li and others},
    journal={arXiv preprint arXiv:2111.09883},
    year={2021}
}
Owner
Christoph Reich
Autonomous systems and electrical engineering student @ Technical University of Darmstadt
Christoph Reich
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022