An University Project of Quera Web Crawling.

Overview

WebCrawlerProject

An University Project of Quera Web Crawling.

خزشگر اینستاگرام

در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگرام بنویسید

  • BeautifulSoup
  • requests
  • Selenium
  • Tkinter
  • pandas
  • threading

استفاده از بسته های دیگر در این پروژه مجاز نمی باشد

برنامه شما باید حاوی بخش های زیر باشد

* یک هشتگ دلخواه را در اینستاگرام جست و جو کند و n اکانتی را که در نتایج جست و جوی اینستاگرام حاوی این هشتگها بوده اند لیست کند. n باید پارامتریک باشد و ابتدای برنامه قابل تنظیم باشد
* در مرحله بعد m پست آخر هر یک از این اکانت ها را در نظر بگیرید و متن کامنت های ذیل هر کدام از این پست ها را به همراه تعداد لایک های آن استخراج کنید. m باید به صورت پارامتری قابل تنظیم باشد
* اطلاعات ذخیره شده را در یک دیتافریم و نهایتا روی هارد ذخیره کنید. دیتافریم شما باید حاوی کامنت، نام کاربری نویسنده کامنت ، نام کاربری اکانت پست اصلی و تعداد لایک های کامنت باشد
* یک واسط کاربری گرافیکی (که ترجیحا با tkinter ایجاد شده باشد) که دارای ابزارهای لازم برای تعامل با کاربر و نمایش خروجی های مورد نظر باشد. از جمله:
- در این پنجره کاربر باید بتواند لیست اکانت هایی را که برنامه شما سراغ پست های آنها خواهد رفت را ببیند و آنها را کم یا زیاد کند
- مقدار m و n را تنظیم کند
- همچنین باید در این پنجره به کاربر نشان داده شود که تا کنون چه تعداد از اکانتها خزش شده اند و چه تعداد باقی مانده است
- زمان سپری شده و زمان تخمینی تا انتهای کار نیز باید نمایش داده شود.پس از پایان کار نیز گزارشی از زمان سپری شده برای کل کار را نشان دهد
- محل ذخیره فایل خروجی روی هارد توسط کاربر تعیین شود
- اضافه کردن موارد دیگر در این واسط گرافیکی نمره امتیازی خواهد داشت
* برنامه شما باید به صورت مالتی ترد نوشته شود. می توانید انتخاب کنید که برای خزش هر اکانت از یک ترد استفاده کنید یا برای خزش هر کامنت یک ترد جدید ایجاد کنید. در صورتی که اجرای برنامه شما از سایر هم کلاسی هایتان سریع تر باشد، نمره امتیازی خواهد داشت
* در این برنامه استایل برنامه نویسی شئ گرا مد نظر نیست؛ اما در صورت پیاده سازی این برنامه به صورتی شئ گرا، نمره امتیازی خواهد داشت
* توابع و کلاسهایی که تعریف میکنید باید دارای داک استرینگ باشند. تمیز بودن کدها طبق اصول معرفی شده در کلاس درس الزامی است

بخش امتیازی ویژه

یک مساله خاص را در نظر بگیرید و هشتگ های مرتبط با آن را از طریق برنامه خودتان جست و جو یا کنید. مثلا فرض کنید می خواهید ببینید کامنتهای افراد در مورد شرکت سامسونگ چه قدر مثبت منفی است. تمام هشتگ های مربوط به شرکت سامسونگ از جمله انواع برندهای مربوطه و ... را از طریق برنامه خودتان جست و جو کنید کامنتهای مربوطه را استخراج کنید.

سپس تعداد 1000تا از کامنتها را به صورت تصادفی درنظر بگیرید و آنها را برچسب گذاری کنید. به این صورت که اگر کامنت دارای نظر مثبت نسبت به شرکت سامسونگ بود، برچست مثبت، در صورتی که دارای نظر منفی بود، برچسب منفی و در غیر این صورت دارای برچسب خنثی باشد. )به صورت معمول برچسب گذاری 1000 تا کامنت کمتر از 2 ساعت از شما زمان می گیرد. می توانید این بخش از کار را به کمک سایر همکلاسی هایتان انجام دهید. هر چه تعداد کامنتها در این بخش بیشتر باشد، دقت خروجی شما بیشتر می شود.

با استفاده از ماژول fasttext در پایتون می توانید یک مدل بسازید که از روی این 1000 کامنت برچسب خورده تا حدی الگوی نظرات مثبت و منفی را یاد بگیرد. سپس این مدل می تواند با درکی که نسبت به منفی یا مثبت بودن یک نظر پیدا کرده، نظر خودش را درباره مثبت و منفی بودن هر کامنت جدیدی اعلام کند! بنابراین می توانید با این مدل تمام نظرات را تست کنید و بررسی کنید چه میزان از نظرات مثبت یا منفی بوده اند.برنامه شما میتواند گزارش کند که چه تعداد از نظرات کاربران درباره این موضوع مثبت یا منفی بوده است. (یا به صورت درصد نمایش دهد)

Owner
Mahdi
Hi, I'm Mahdi. I love everything related to computers.
Mahdi
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022