Apache Flink

Overview

Apache Flink

Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities.

Learn more about Flink at https://flink.apache.org/

Features

  • A streaming-first runtime that supports both batch processing and data streaming programs

  • Elegant and fluent APIs in Java and Scala

  • A runtime that supports very high throughput and low event latency at the same time

  • Support for event time and out-of-order processing in the DataStream API, based on the Dataflow Model

  • Flexible windowing (time, count, sessions, custom triggers) across different time semantics (event time, processing time)

  • Fault-tolerance with exactly-once processing guarantees

  • Natural back-pressure in streaming programs

  • Libraries for Graph processing (batch), Machine Learning (batch), and Complex Event Processing (streaming)

  • Built-in support for iterative programs (BSP) in the DataSet (batch) API

  • Custom memory management for efficient and robust switching between in-memory and out-of-core data processing algorithms

  • Compatibility layers for Apache Hadoop MapReduce

  • Integration with YARN, HDFS, HBase, and other components of the Apache Hadoop ecosystem

Streaming Example

case class WordWithCount(word: String, count: Long)

val text = env.socketTextStream(host, port, '\n')

val windowCounts = text.flatMap { w => w.split("\\s") }
  .map { w => WordWithCount(w, 1) }
  .keyBy("word")
  .window(TumblingProcessingTimeWindow.of(Time.seconds(5)))
  .sum("count")

windowCounts.print()

Batch Example

case class WordWithCount(word: String, count: Long)

val text = env.readTextFile(path)

val counts = text.flatMap { w => w.split("\\s") }
  .map { w => WordWithCount(w, 1) }
  .groupBy("word")
  .sum("count")

counts.writeAsCsv(outputPath)

Building Apache Flink from Source

Prerequisites for building Flink:

  • Unix-like environment (we use Linux, Mac OS X, Cygwin, WSL)
  • Git
  • Maven (we recommend version 3.2.5 and require at least 3.1.1)
  • Java 8 or 11 (Java 9 or 10 may work)
git clone https://github.com/apache/flink.git
cd flink
mvn clean package -DskipTests # this will take up to 10 minutes

Flink is now installed in build-target.

NOTE: Maven 3.3.x can build Flink, but will not properly shade away certain dependencies. Maven 3.1.1 creates the libraries properly. To build unit tests with Java 8, use Java 8u51 or above to prevent failures in unit tests that use the PowerMock runner.

Developing Flink

The Flink committers use IntelliJ IDEA to develop the Flink codebase. We recommend IntelliJ IDEA for developing projects that involve Scala code.

Minimal requirements for an IDE are:

  • Support for Java and Scala (also mixed projects)
  • Support for Maven with Java and Scala

IntelliJ IDEA

The IntelliJ IDE supports Maven out of the box and offers a plugin for Scala development.

Check out our Setting up IntelliJ guide for details.

Eclipse Scala IDE

NOTE: From our experience, this setup does not work with Flink due to deficiencies of the old Eclipse version bundled with Scala IDE 3.0.3 or due to version incompatibilities with the bundled Scala version in Scala IDE 4.4.1.

We recommend to use IntelliJ instead (see above)

Support

Don’t hesitate to ask!

Contact the developers and community on the mailing lists if you need any help.

Open an issue if you found a bug in Flink.

Documentation

The documentation of Apache Flink is located on the website: https://flink.apache.org or in the docs/ directory of the source code.

Fork and Contribute

This is an active open-source project. We are always open to people who want to use the system or contribute to it. Contact us if you are looking for implementation tasks that fit your skills. This article describes how to contribute to Apache Flink.

About

Apache Flink is an open source project of The Apache Software Foundation (ASF). The Apache Flink project originated from the Stratosphere research project.

Owner
The Apache Software Foundation
The Apache Software Foundation
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022