Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

Overview

BI-RADS BERT

Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

This implementation could be used on other radiology in house corpus as well. Labelling your own data should take the same form as reports and dataframes in './mockdata'.

Conda Environment setup

This project was developed using conda environments. To build the conda environment use the line of code below from the command line

conda create --name NLPenv --file requirements.txt --channel default --channel conda-forge --channel huggingface --channel pytorch

Dataset Organization

Two datasets are needed to build BERT embeddings and fine tuned Field Extractors. 1. dataframe of SQL data, 2. labeled data for field extraction.

Dataframe of SQL data: example file './mock_data/sql_dataframe.csv'. This file was efficiently made by producing a spreadsheet of all entries in the sql table and saving them as a csv file. It will require that each line of the report be split and coordinated with a SequenceNumber column to combine all the reports. Then continue to the 'How to Run BERT Pretraining' Section.

Labeled data for Field Extraction: example of files in './mock_data/labaled_data'. Exach txt file is a save dict object with fields:

example = {
    'original_report': original text report unprocessed from the exam_dataframe.csv, 
    'sectionized': dict example of the report in sections, ex. {'Title': '...', 'Hx': '...', ...}
    'PID': patient identification number,
    'date': date of the exam,
    'field_name1': name of a field you wish to classify, vlaue is the label, 
    'field_name2': more labeled fields are an option, 
    ...
}

How to Run BERT Pretraining

Step 1: SQLtoDataFrame.py

This script can be ran to convert SQL data from a hospital records system to a dataframe for all exams. Hospital records keep each individual report line as a separate SQL entry, so by using 'SequenceNumber' we can assemble them in order.

python ./examples/SQLtoDataFrame.py 
--input_sql ./mock_data/sql_dataframe.csv 
--save_name /folder/to/save/exam_dataframe/save_file.csv

This will output an 'exam_dataframe.csv' file that can be used in the next step.

Step 2: TextPreProcessingBERTModel.py

This script is ran to convert the exam_dataframe.csv file into a pre_training text file for training and validation, with a vocabulary size. An example of the output can be found in './mock_data/pre_training_data'.

python ./examples/TextPreProcessingBERTModel.py 
--dfolder /folder/that/contains/exam_dataframe 
--ft_folder ./mock_data/labeled_data

Step 3: MLM_Training_transformers.py

This script will now run the BERT pre training with masked language modeling. The Output directory (--output_dir) used is required to be empty; eitherwise the parser parameter --overwrite_output_dir is required to overwrite the files in the output directory.

python ./examples/MLM_Training_transformers.py 
--train_data_file ./mock_data/pre_training_data/VocabOf39_PreTraining_training.txt 
--output_dir /folder/to/save/bert/model
--do_eval 
--eval_data_file ./mock_data/pre_training_data/PreTraining_validation.txt 

How to Run BERT Fine Tuning

--pre_trained_model parsed arugment that can be used for all the follwing scripts to load a pre trained embedding. The default is bert-base-uncased. To get BioClinical BERT use --pre_trained_model emilyalsentzer/Bio_ClinicalBERT.

Step 4: BERTFineTuningSectionTokenization.py

This script will run fine tuning to train a section tokenizer with the option of using auxiliary data.

python ./examples/BERTFineTuningSectionTokenization.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/section_tokenizer

Optional parser arguements:

--aux_data If used then the Section Tokenizer will be trained with the auxilliary data.

--k_fold If used then the experiment is run with a 5 fold cross validation.

Step 5: BERTFineTuningFieldExtractionWoutSectionization.py

This script will run fine tuning training of field extraction without section tokenization.

python ./examples/BERTFineTuningFieldExtractionWoutSectionization.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/field_extractor_WoutST
--field_name Modality

field_name is a required parsed arguement.

Optional parser arguements:

--k_fold If used then the experiment is run with a 5 fold cross validation.

Step 6: BERTFineTuningFieldExtraction.py

This script will run fine tuning training of field extraction with section tokenization.

python ./examples/BERTFineTuningFieldExtraction.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/field_extractor
--field_name Modality
--report_section Title

field_name and report_section is a required parsed arguement.

Optional parser arguements:

--k_fold If used then the experiment is run with a 5 fold cross validation.

Additional Codes

post_ExperimentSummary.py

This code can be used to run statistical analysis of test results that are produced from BERTFineTuning codes.

To determine the best final model, we performed statistical significance testing with a 95% confidence. We used the Mann-Whitney U test to compare the medians of different section tokenizers as the distribution of accuracy and G.F1 performance is skewed to the left (medians closer to 100%). For the field extraction classifiers, we used the McNemar test to compare the agreement between two classifiers. The McNemar test was chosen because it has been robustly proven to have an acceptable probability of Type I errors (not detecting a difference between two classifiers when there is a difference). After evaluating both configurations of field extraction explored in this paper, we performed another McNemar test to assist in choosing the best technique. All statistical tests were performed with p-value adjustments for multiple comparisons testing with Bonferonni correction.

Note: input folder must contain 2 or more .xlsx files of experiemtnal results to perform a statistical test.

python ./examples/post_ExperimentSummary.py --folder /folder/where/xlsx/files/are/located --stat_test MannWhitney

--stat_test options: 'MannWhitney' and 'McNemar'.

'MannWhitney': MannWhitney U-Test. This test was used for the Section Tokenizer experimental results comparing the results from different models. https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

'McNemar' : McNemar's test. This test was used for the Field Extraction experimental results comparing the results from different models. https://en.wikipedia.org/wiki/McNemar%27s_test

Contact

Please post a Github issue if you have any questions.

Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022