PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

Related tags

Deep LearningDRNet
Overview

DRNet for Video Indvidual Counting (CVPR 2022)

Introduction

This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning for Video Individual Counting. Different from the single image counting methods, it counts the total number of the pedestrians in a video sequence with a person in different frames only being calculated once. DRNet decomposes this new task to estimate the initial crowd number in the first frame and integrate differential crowd numbers in a set of following image pairs (namely current frame and preceding frame). framework

Catalog

  • Testing Code (2022.3.19)
  • PyTorch pretrained models (2022.3.19)
  • Training Code
    • HT21
    • SenseCrowd

Getting started

preparatoin

  • Clone this repo in the directory (Root/DRNet):

  • Install dependencies. We use python 3.7 and pytorch >= 1.6.0 : http://pytorch.org.

    conda create -n DRNet python=3.7
    conda activate DRNet
    conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch
    cd ${DRNet}
    pip install -r requirements.txt
  • PreciseRoIPooling for extracting the feature descriptors

    Note: the PreciseRoIPooling [1] module is included in the repo, but it's likely to have some problems when running the code:

    1. If you are prompted to install ninja, the following commands will help you.
      wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip
      sudo unzip ninja-linux.zip -d /usr/local/bin/
      sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force 
    2. If you encounter errors when compiling the PreciseRoIPooling, you can look up the original repo's issues for help.
  • Datasets

    • HT21 dataset: Download CroHD dataset from this link. Unzip HT21.zip and place HT21 into the folder (Root/dataset/).
    • SenseCrowd dataset: To be updated when it is released.
    • Download the lists of train/val/test sets at link: dataset., and place them to each dataset folder, respectively.

Training

Check some parameters in config.py before training,

  • Use __C.DATASET = 'HT21' to set the dataset (default: HT21).
  • Use __C.GPU_ID = '0' to set the GPU.
  • Use __C.MAX_EPOCH = 20 to set the number of the training epochs (default:20).
  • Use __C.EXP_PATH = os.path.join('./exp', __C.DATASET) to set the dictionary for saving the code, weights, and resume point.

Check other parameters (TRAIN_BATCH_SIZE, TRAIN_SIZE etc.) in the Root/DRNet/datasets/setting in case your GPU's memory is not support for the default setting.

  • run python train.py.

Tips: The training process takes ~10 hours on HT21 dataset with one TITAN RTX (24GB Memory).

Testing

To reproduce the performance, download the pre-trained models and then place pretrained_models folder to Root/DRNet/model/

  • for HT21:
    • Run python test_HT21.py.
  • for SenseCrowd:
    • Run python test_SENSE.py. Then the output file (*_SENSE_cnt.py) will be generated.

Performance

The results on HT21 and SenseCrowd.

  • HT21 dataset
Method CroHD11~CroHD15 MAE/MSE/MRAE(%)
Paper: VGG+FPN [2,3] 164.6/1075.5/752.8/784.5/382.3 141.1/192.3/27.4
This Repo's Reproduction: VGG+FPN [2,3] 138.4/1017.5/623.9/659.8/348.5 160.7/217.3/25.1
  • SenseCrowd dataset
Method MAE/MSE/MRAE(%) MIAE/MOAE D0~D4 (for MAE)
Paper: VGG+FPN [2,3] 12.3/24.7/12.7 1.98/2.01 4.1/8.0/23.3/50.0/77.0
This Repo's Reproduction: VGG+FPN [2,3] 11.7/24.6/11.7 1.99/1.88 3.6/6.8/22.4/42.6/85.2

Video Demo

Please visit bilibili or YouTube to watch the video demonstration. demo

References

  1. Acquisition of Localization Confidence for Accurate Object Detection, ECCV, 2018.
  2. Very Deep Convolutional Networks for Large-scale Image Recognition, arXiv, 2014.
  3. Feature Pyramid Networks for Object Detection, CVPR, 2017.

Citation

If you find this project is useful for your research, please cite:

@article{han2022drvic,
  title={DR.VIC: Decomposition and Reasoning for Video Individual Counting},
  author={Han, Tao, Bai Lei, Gao, Junyu, Qi Wang, and Ouyang  Wanli},
  booktitle={CVPR},
  year={2022}
}

Acknowledgement

The released PyTorch training script borrows some codes from the C^3 Framework and SuperGlue repositories. If you think this repo is helpful for your research, please consider cite them.

Owner
tao han
tao han
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022