A parallel framework for population-based multi-agent reinforcement learning.

Overview

MALib: A parallel framework for population-based multi-agent reinforcement learning

GitHub license

MALib is a parallel framework of population-based learning nested with (multi-agent) reinforcement learning (RL) methods, such as Policy Space Response Oracle, Self-Play and Neural Fictitous Self-Play. MALib provides higher-level abstractions of MARL training paradigms, which enables efficient code reuse and flexible deployments on different distributed computing paradigms. The design of MALib also strives to promote the research of other multi-agent learning, including multi-agent imitation learning and model-based MARL.

architecture

Installation

The installation of MALib is very easy. We've tested MALib on Python 3.6 and 3.7. This guide is based on ubuntu 18.04 and above. We strongly recommend using conda to manage your dependencies, and avoid version conflicts. Here we show the example of building python 3.7 based conda environment.

conda create -n malib python==3.7 -y
conda activate malib

# install dependencies
./install_deps.sh

# install malib
pip install -e .

External environments are integrated in MALib, such as StarCraftII and vizdoom, you can install them via pip install -e .[envs]. For users who wanna contribute to our repository, run pip install -e .[dev] to complete the development dependencies.

optional: if you wanna use alpha-rank to solve meta-game, install open-spiel with its installation guides

Quick Start

"""PSRO with PPO for Leduc Holdem"""

from malib.envs.poker import poker_aec_env as leduc_holdem
from malib.runner import run
from malib.rollout import rollout_func


env = leduc_holdem.env(fixed_player=True)

run(
    agent_mapping_func=lambda agent_id: agent_id,
    env_description={
        "creator": leduc_holdem.env,
        "config": {"fixed_player": True},
        "id": "leduc_holdem",
        "possible_agents": env.possible_agents,
    },
    training={
        "interface": {
            "type": "independent",
            "observation_spaces": env.observation_spaces,
            "action_spaces": env.action_spaces
        },
    },
    algorithms={
        "PSRO_PPO": {
            "name": "PPO",
            "custom_config": {
                "gamma": 1.0,
                "eps_min": 0,
                "eps_max": 1.0,
                "eps_decay": 100,
            },
        }
    },
    rollout={
        "type": "async",
        "stopper": "simple_rollout",
        "callback": rollout_func.sequential
    }
)

Citing MALib

If you use MALib in your work, please cite the accompanying paper.

@misc{zhou2021malib,
      title={MALib: A Parallel Framework for Population-based Multi-agent Reinforcement Learning}, 
      author={Ming Zhou and Ziyu Wan and Hanjing Wang and Muning Wen and Runzhe Wu and Ying Wen and Yaodong Yang and Weinan Zhang and Jun Wang},
      year={2021},
      eprint={2106.07551},
      archivePrefix={arXiv},
      primaryClass={cs.MA}
}
Owner
MARL @ SJTU
Multi-Agent Research at Shanghai Jiao Tong University
MARL @ SJTU
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022