Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Related tags

Deep LearningQMPS
Overview

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

This repository contains the code and data for the corresponding preprint article arXiv:2201.11790.

Summary

We present a novel Q-learning framework (QMPS) specifically designed for controlling 1d spin chains in which the RL agent is represented by a combination of a matrix product state (MPS) and a neural network (NN). The algorithm can be used to find optimal control protocols that prepare a target (ground) state starting from a set of initial states, and as an example we implement the paradigmatic mixed-field Ising model. To reach system sizes which lie beyond exact simulation techniques, we employ matrix product states as a representation for the quantum state and as a trainable machine learning ansatz. The hybrid MPS+NN architecture is then optimized via backpropagation and conventional gradient descent.

Content

RL agent

  • dqn/main.py: Script that performs one full instance of training for specified (hyper)parameters and plots/saves the results.
  • dqn/dqn.py: QMPS agent (essentially a DQN agent where the ansatz is composed of a hybrid NN+MPS network).
  • dqn/dqn_utils.py: Functions for training & evaluating a QMPS agent.
  • dqn/models.py: QMPS ansatz with forward and backward passes.
  • dqn/replay_buffers.py: DQN replay buffer.

RL environment

trained_models/ contains the corresponding data of the control studies presented in the paper (including the optimized QMPS parameters).

Requirements

The code is written in Python and apart from the usual libraries (numpy, scipy, matplotlib) you need to have the following packages installed:

  • JAX: For performance enhancenment via just-in-time compilation.
  • TensorNetwork: For the spin chain simulations.

Citation

If you use our code/models for your research, consider citing our paper:

@misc{metz2022,
      title={Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks}, 
      author={Friederike Metz and Marin Bukov},
      year={2022},
      eprint={2201.11790},
      archivePrefix={arXiv},
      primaryClass={quant-ph}
}
Owner
Friederike Metz
Friederike Metz
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021