Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

Related tags

Deep LearningATP-AMR
Overview

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs

PWC

PWC

Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs" accepted by findings of NAACL 2022.

News

  • 🎈 Release camera ready paper. arXiv 2022.04.20
  • 🎈 We have released four trained models and the test scripts. 2022.04.10

Todos

  • 🎯 We are working on merging our training/preprocessing code with the amrlib repo.

Brief Introduction

TL;DR: SOTA AMR Parsing single model using only 40k extra data. Rank 1st model on Structrual-Related Scores (SRL and Reentrancy).

As Abstract Meaning Representation (AMR) implicitly involves compound semantic annotations, we hypothesize auxiliary tasks which are semantically or formally related can better enhance AMR parsing. With carefully designed control experiments, we find that 1) Semantic role labeling (SRL) and dependency parsing (DP), would bring much more significant performance gain than unrelated tasks in the text-to-AMR transition. 2) To make a better fit for AMR, data from auxiliary tasks should be properly ``AMRized'' to PseudoAMR before training. 3) Intermediate-task training paradigm outperforms multitask learning when introducing auxiliary tasks to AMR parsing.

From an empirical perspective, we propose a principled method to choose, reform, and train auxiliary tasks to boost AMR parsing. Extensive experiments show that our method achieves new state-of-the-art performance on in-distribution, out-of-distribution, low-resources benchmarks of AMR parsing.

Requriments

Build envrionment for Spring

cd spring
conda create -n spring python=3.7
pip install -r requirements.txt
pip install -e .
# we use torch==1.11.0 and A40 GPU. lower torch version is fine.

Build envrionment for BLINK to do entity linking, Note that BLINK has some requirements conflicts with Spring, while the blinking script relies on both repos. So we build it upon Spring.

conda create -n blink37 -y python=3.7 && conda activate blink37

cd spring
pip install -r requirements.txt
pip install -e .

cd ../BLINK
pip install -r requirements.txt
pip install -e .
bash download_blink_models.sh

Preprocess and AMRization

coming soon ~

Training

(cleaning code and data in progress)

cd spring/bin
  • Train ATP-DP Task
python train.py --direction dp --config /home/cl/AMR_Multitask_Inter/spring/configs/config_dp.yaml
  • Train ATP-SRL Task
python train.py --direction dp --config /home/cl/AMR_Multitask_Inter/spring/configs/config_srl.yaml 
# yes, the direction is also dp
  • Train AMR Task based on intermediate ATP-SRL/DP Model
python train.py --direction amr --checkpoint PATH_TO_SRL_DP_MODEL --config ../configs/config.yaml
  • Train AMR,SRL,DP Task in multitask Manner
python train.py --direction multi --config ../configs/config_multitask.yaml

Inference

conda activate spring

cd script
bash intermediate_eval.sh MODEL_PATH 
# it will generate the gold and the parsed amr files, you should the change the path of AMR2.0/3.0 Dataset in the script.

conda activate blink37 
# you should download the blink models according to the ATP/BLINK/download_blink_models.sh in BLINK repo
bash blink.sh PARSED_AMR BLINK_MODEL_DIR

cd ../amr-evaluation
bash evaluation.sh PARSED_AMR.blink GOLD_AMR_PATH

Models Release

You could refer to the inference section and download the models below to reproduce the result in our paper.

#scores
Smatch -> P: 0.858, R: 0.844, F: 0.851
Unlabeled -> P: 0.890, R: 0.874, F: 0.882
No WSD -> -> P: 0.863, R: 0.848, F: 0.855
Concepts -> P: 0.914 , R: 0.895 , F: 0.904
Named Ent. -> P: 0.928 , R: 0.901 , F: 0.914
Negations -> P: 0.756 , R: 0.758 , F: 0.757
Wikification -> P: 0.849 , R: 0.824 , F: 0.836
Reentrancies -> P: 0.756 , R: 0.744 , F: 0.750
SRL -> P: 0.840 , R: 0.830 , F: 0.835
#scores
Smatch -> P: 0.859, R: 0.844, F: 0.852
Unlabeled -> P: 0.891, R: 0.876, F: 0.883
No WSD -> -> P: 0.863, R: 0.849, F: 0.856
Concepts -> P: 0.917 , R: 0.898 , F: 0.907
Named Ent. -> P: 0.942 , R: 0.921 , F: 0.931
Negations -> P: 0.742 , R: 0.755 , F: 0.749
Wikification -> P: 0.851 , R: 0.833 , F: 0.842
Reentrancies -> P: 0.753 , R: 0.741 , F: 0.747
SRL -> P: 0.837 , R: 0.830 , F: 0.833
#scores
Smatch -> P: 0.859, R: 0.847, F: 0.853
Unlabeled -> P: 0.891, R: 0.877, F: 0.884
No WSD -> -> P: 0.863, R: 0.851, F: 0.857
Concepts -> P: 0.917 , R: 0.899 , F: 0.908
Named Ent. -> P: 0.938 , R: 0.917 , F: 0.927
Negations -> P: 0.740 , R: 0.755 , F: 0.747
Wikification -> P: 0.849 , R: 0.830 , F: 0.840
Reentrancies -> P: 0.755 , R: 0.748 , F: 0.751
SRL -> P: 0.837 , R: 0.836 , F: 0.836
#scores
Smatch -> P: 0.844, R: 0.836, F: 0.840
Unlabeled -> P: 0.875, R: 0.866, F: 0.871
No WSD -> -> P: 0.849, R: 0.840, F: 0.845
Concepts -> P: 0.908 , R: 0.892 , F: 0.900
Named Ent. -> P: 0.900 , R: 0.879 , F: 0.889
Negations -> P: 0.734 , R: 0.729 , F: 0.731
Wikification -> P: 0.816 , R: 0.798 , F: 0.807
Reentrancies -> P: 0.729 , R: 0.749 , F: 0.739
SRL -> P: 0.822 , R: 0.830 , F: 0.826

Acknowledgements

We thank all people/group that share open-source scripts for this project, which include the authors for SPRING, amrlib, smatch, amr-evaluation, BLINK and all other repos.

Citation

If you feel our work helpful, please kindly cite

@misc{https://doi.org/10.48550/arxiv.2204.08875,
  doi = {10.48550/ARXIV.2204.08875},
  
  url = {https://arxiv.org/abs/2204.08875},
  
  author = {Chen, Liang and Wang, Peiyi and Xu, Runxin and Liu, Tianyu and Sui, Zhifang and Chang, Baobao},
  
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
}
Owner
Chen Liang
Currently a research intern at MSR Asia, NLC group
Chen Liang
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023