Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Overview

Part Detector Discovery

This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler published at ACCV 2014. If you would like to refer to this work, please cite the corresponding paper

@inproceedings{Simon14:PDD,
  author = {Marcel Simon and Erik Rodner and Joachim Denzler},
  booktitle = {Asian Conference on Computer Vision (ACCV)},
  title = {Part Detector Discovery in Deep Convolutional Neural Networks},
  year = {2014},
}

The following steps will guide you through the usage of the code.

1. Python Environment

Setup a python environment, preferably a virtual environment using e. g. virtual_env. The requirements file might install more than you need.

virtualenv pyhton-env && pip install -r requirements.txt

2. DeCAF Installation

Build and install decaf into this environment

source python-env/bin/activate
cd decaf-tools/decaf/
python setup.py build
python setup.py install

3. Pre-Trained ImageNet Model

Get the decaf ImageNet model:

cd decaf-tools/models/
bash get_model.sh

You now might need to adjust the path to the decaf model in decaf-tools/extract_grad_map.py, line 75!

4. Gradient Map Calculation

Now you can calculate the gradient maps using the following command. For a single image, use decaf-tools/extract_grad_map.py :

usage: extract_grad_map.py [-h] [--layers LAYERS [LAYERS ...]] [--limit LIMIT]
                           [--channel_limit CHANNEL_LIMIT]
                           [--images pattern [pattern ...]] [--outdir OUTDIR]

Calculate the gradient maps for an image.

optional arguments:
  -h, --help            show this help message and exit
  --layers LAYERS [LAYERS ...]
  --limit LIMIT         When calculating the gradient of the class scores,
                        calculate the gradient for the output elements with the
                        [limit] highest probabilities.
  --channel_limit CHANNEL_LIMIT
                        Sets the number of channels per layer you want to
                        calculate the gradient of.
  --images pattern [pattern ...]
			Absolute image path to the image. You can use wildcards.
  --outdir OUTDIR

For a list of absolute image paths call this script this way:

python extract_grad_map.py --images $(cat /path/to/imagelist.txt) --limit 1 --channel_limit 256 --layers probs pool5 --outdir /path/to/output/

The gradient maps are stored as Matlab .mat file and as png. In addition to these, the script also generates A html file to view the gradient maps and the input image. The gradient map is placed in the directory outdir/images'_parent_dir/image_filename/*. Be aware that approx. 45 MiB of storage is required per input image. For the whole CUB200-2011 dataset this means a total storage size of approx 800 GiB!

5. Part Localization

Apply the part localization using GMM fitting or maximum finding. Have a look in the part_localization folder for that. Open calcCUBPartLocs.m and adjust the paths. Now simply run calcCUBPartLocs(). This will create a file which has the same format as the part_locs.txt file of the CUB200-2011 dataset. You can use it for part-based classification.

6. Classification

We also provide the classification framework to use these part localizations and feature extraction with DeCAF. Go to the folder classification and open partEstimationDeepLearing.m. Have a look at line 40 and adjust the path such that it points to the correct file. Open settings.m and adjust the paths. Next, open settings.m and adjust the paths to liblinear and the virtual python environment. Now you can execute for example:

init
recRate = experimentParts('cub200_2011',200, struct('descriptor','plain','preprocessing_useMask','none','preprocessing_cropToBoundingbox',0), struct('partSelection',[1 2 3 9 14],'bothSymmetricParts',0,'descriptor','plain','trainPartLocation','est','preprocessing_relativePartSize',1.0/8,'preprocessing_cropToBoundingbox',0))

This will evaluate the classification performance on the standard train-test-split using the estimated part locations. Experiment parts has four parameters. The first one tell the function which dataset to use. You want to keep 'cub200_2011' here.

The second one is the number of classes to use, 3, 14 and 200 is supported here. Next is the setup for the global feature extraction. The only important setting is preprocessing_cropToBoundingbox. A value of 0 will tell the function not to use the ground truth bounding box during testing. You should leave the other two options as shown here.

The last one is the setup for the part features. You can select here, which parts you want to use and if you want to extract features from both symmetric parts, if both are visible. Since the part detector discovery associates some parts with the same channel, the location prediction will be the same for these. In this case, only select the parts which have unique channels here. In the example, the part 1, 2, 3, 9 and 14 are associated with different channels.

'trainPartLocation' tells the function, if grount-truth ('gt') or estimated ('est') part locations should be used for training. Since the discovered part detectors do not necessarily relate to semantic parts, 'est' usually is the better option here.

'preprocessing_relativePartSize' adjusts the size of patches, that are extracted at the estimated part locations. Please have a look at the paper for more information.

For the remaining options, you should keep everything as it is.

Acknowledgements

The classification framework is an extension of the excellent fine-grained recognition framework by Christoph Göring, Erik Rodner, Alexander Freytag and Joachim Denzler. You can find their project at https://github.com/cvjena/finegrained-cvpr2014.

Our work is based on DeCAF, a framework for convolutional neural networks. You can find the repository of the corresponding project at https://github.com/UCB-ICSI-Vision-Group/decaf-release/ .

License

Part Detector Discovery Framework by Marcel Simon, Erik Rodner and Joachim Denzler is licensed under the non-commercial license Creative Commons Attribution 4.0 International License. For usage beyond the scope of this license, please contact Marcel Simon.

You might also like...
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

Data and Code for ACL 2021 Paper
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Open source code for Paper
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

Releases(v1.0)
Owner
Computer Vision Group Jena
Computer Vision Group Jena
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022