Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Related tags

Deep LearningStemGNN
Overview

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting

This repository is the official implementation of Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting.

Requirements

Recommended version of OS & Python:

To install python dependencies, virtualenv is recommended, sudo apt install python3.7-venv to install virtualenv for python3.7. All the python dependencies are verified for pip==20.1.1 and setuptools==41.2.0. Run the following commands to create a venv and install python dependencies:

python3.7 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Datasets

PEMS03, PEMS04, PEMS07, PEMS08, METR-LA, PEMS-BAY, Solar, Electricity, ECG5000, COVID-19

We can get the raw data through the links above. We evaluate the performance of traffic flow forecasting on PEMS03, PEMS07, PEMS08 and traffic speed forecasting on PEMS04, PEMS-BAY and METR-LA. So we use the traffic flow table of PEMS03, PEMS07, PEMS08 and the traffic speed table of PEMS04, PEMS-BAY and METR-LA as our datasets. We download the solar power data of Alabama (Eastern States) and merge the 5-minute csv files (totally 137 time series) as our Solar dataset. We delete the header and index of Electricity file downloaded from the link above as our Electricity dataset. For COVID-19 dataset, the raw data is under the folder csse_covid_19_data/csse_covid_19_time_series/ of the above github link. We use time_series_covid19_confirmed_global.csv to calculate the daily number of newly confirmed infected people from 1/22/2020 to 5/10/2020. The 25 countries we take into consideration are 'US','Canada','Mexico','Russia','UK','Italy','Germany','France','Belarus ','Brazil','Peru','Ecuador','Chile','India','Turkey','Saudi Arabia','Pakistan','Iran','Singapore','Qatar','Bangladesh','Arab','China','Japan','Korea'.

The input csv file should contain no header and its shape should be T*N, where T denotes total number of timestamps, N denotes number of nodes.

Since complex data cleansing is needed on the above datasets provided in the urls before fed into the StemGNN model, we provide a cleaned version of ECG5000 (./dataset/ECG_data.csv) for reproduction convenience. The ECG_data.csv is in shape of 5000*140, where 5000 denotes number of timestamps and 140 denotes total number of nodes. Run command python main.py to trigger training and evaluation on ECG_data.csv.

Training and Evaluation

The training procedure and evaluation procedure are all included in the main.py. To train and evaluate on some dataset, run the following command:

python main.py --train True --evaluate True --dataset <name of csv file> --output_dir <path to output directory> --n_route <number of nodes> --window_size <length of sliding window> --horizon <predict horizon> --norm_method z_score --train_length 7 --validate_length 2 --test_length 1

The detailed descriptions about the parameters are as following:

Parameter name Description of parameter
train whether to enable training, default True
evaluate whether to enable evaluation, default True
dataset file name of input csv
window_size length of sliding window, default 12
horizon predict horizon, default 3
train_length length of training data, default 7
validate_length length of validation data, default 2
test_length length of testing data, default 1
epoch epoch size during training
lr learning rate
multi_layer hyper parameter of STemGNN which controls the parameter number of hidden layers, default 5
device device that the code works on, 'cpu' or 'cuda:x'
validate_freq frequency of validation
batch_size batch size
norm_method method for normalization, 'z_score' or 'min_max'
early_stop whether to enable early stop, default False

Table 1 Configurations for all datasets

Dataset train evaluate node_cnt window_size horizon norm_method
METR-LA True True 207 12 3 z_score
PEMS-BAY True True 325 12 3 z_score
PEMS03 True True 358 12 3 z_score
PEMS04 True True 307 12 3 z_score
PEMS07 True True 228 12 3 z_score
PEMS08 True True 170 12 3 z_score
COVID-19 True True 25 28 28 z_score

Results

Our model achieves the following performance on the 10 datasets:

Table 2 (predict horizon: 3 steps)

Dataset MAE RMSE MAPE(%)
METR-LA 2.56 5.06 6.46
PEMS-BAY 1.23 2.48 2.63
PEMS03 14.32 21.64 16.24
PEMS04 20.24 32.15 10.03
PEMS07 2.14 4.01 5.01
PEMS08 15.83 24.93 9.26

Table 3 (predict horizon: 28 steps)

Dataset MAE RMSE MAPE
COVID-19 662.24 1023.19 19.3
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022