HDMapNet: A Local Semantic Map Learning and Evaluation Framework

Related tags

Deep LearningHDMapNet
Overview

HDMapNet_devkit

Devkit for HDMapNet.

HDMapNet: A Local Semantic Map Learning and Evaluation Framework

Qi Li, Yue Wang, Yilun Wang, Hang Zhao

[Paper] [Project Page] [5-min video]

Abstract: Estimating local semantics from sensory inputs is a central component for high-definition map constructions in autonomous driving. However, traditional pipelines require a vast amount of human efforts and resources in annotating and maintaining the semantics in the map, which limits its scalability. In this paper, we introduce the problem of local semantic map learning, which dynamically constructs the vectorized semantics based on onboard sensor observations. Meanwhile, we introduce a local semantic map learning method, dubbed HDMapNet. HDMapNet encodes image features from surrounding cameras and/or point clouds from LiDAR, and predicts vectorized map elements in the bird's-eye view. We benchmark HDMapNet on nuScenes dataset and show that in all settings, it performs better than baseline methods. Of note, our fusion-based HDMapNet outperforms existing methods by more than 50% in all metrics. In addition, we develop semantic-level and instance-level metrics to evaluate the map learning performance. Finally, we showcase our method is capable of predicting a locally consistent map. By introducing the method and metrics, we invite the community to study this novel map learning problem. Code and evaluation kit will be released to facilitate future development.

Questions/Requests: Please file an issue or email me at [email protected].

Preparation

  1. Download nuScenes dataset and put it to dataset/ folder.

  2. Install dependencies by running

pip install -r requirement.txt

Vectorization

Run python vis_label.py for demo of vectorized labels. The visualizations are in dataset/nuScenes/samples/GT.

Evaluation

Run python evaluate.py --result_path [submission file] for evaluation. The script accepts vectorized or rasterized maps as input. For vectorized map, We firstly rasterize the vectors to map to do evaluation. For rasterized map, you should make sure the line width=1.

Below is the format for vectorized submission:

-- Whether this submission uses camera data as an input. "use_lidar": -- Whether this submission uses lidar data as an input. "use_radar": -- Whether this submission uses radar data as an input. "use_external": -- Whether this submission uses external data as an input. "vector": true -- Whether this submission uses vector format. }, "results": { sample_token : List[vectorized_line] -- Maps each sample_token to a list of vectorized lines. } } vectorized_line { "pts": List[ ] -- Ordered points to define the vectorized line. "pts_num": , -- Number of points in this line. "type": <0, 1, 2> -- Type of the line: 0: ped; 1: divider; 2: boundary "confidence_level": -- Confidence level for prediction (used by Average Precision) }">
vectorized_submission {
    "meta": {
        "use_camera":   
          
             -- Whether this submission uses camera data as an input.
        "use_lidar":    
           
              -- Whether this submission uses lidar data as an input.
        "use_radar":    
            
               -- Whether this submission uses radar data as an input.
        "use_external": 
             
                -- Whether this submission uses external data as an input.
        "vector":        true   -- Whether this submission uses vector format.
    },
    "results": {
        sample_token 
              
               : List[vectorized_line] -- Maps each sample_token to a list of vectorized lines. } } vectorized_line { "pts": List[
               
                ] -- Ordered points to define the vectorized line. "pts_num": 
                
                 , -- Number of points in this line. "type": <0, 1, 2> -- Type of the line: 0: ped; 1: divider; 2: boundary "confidence_level": 
                 
                   -- Confidence level for prediction (used by Average Precision) } 
                 
                
               
              
             
            
           
          

For rasterized submission, the format is:

-- Whether this submission uses camera data as an input. "use_lidar": -- Whether this submission uses lidar data as an input. "use_radar": -- Whether this submission uses radar data as an input. "use_external": -- Whether this submission uses external data as an input. "vector": false -- Whether this submission uses vector format. }, "results": { sample_token : { -- Maps each sample_token to a list of vectorized lines. "map": [ ], -- Raster map of prediction (C=0: ped; 1: divider 2: boundary). The value indicates the line idx (start from 1). "confidence_level": Array[float], -- confidence_level[i] stands for confidence level for i^th line (start from 1). } } }">
rasterized_submisson {
    "meta": {
        "use_camera":   
        
           -- Whether this submission uses camera data as an input.
        "use_lidar":    
         
            -- Whether this submission uses lidar data as an input.
        "use_radar":    
          
             -- Whether this submission uses radar data as an input.
        "use_external": 
           
              -- Whether this submission uses external data as an input.
        "vector":       false   -- Whether this submission uses vector format.
    },
    "results": {
        sample_token 
            
             : { -- Maps each sample_token to a list of vectorized lines. "map": [
             
              ], -- Raster map of prediction (C=0: ped; 1: divider 2: boundary). The value indicates the line idx (start from 1). "confidence_level": Array[float], -- confidence_level[i] stands for confidence level for i^th line (start from 1). } } } 
             
            
           
          
         
        

Run python export_to_json.py to get a demo of vectorized submission. Run python export_to_json.py --raster for rasterized submission.

Citation

If you found this useful in your research, please consider citing

@misc{li2021hdmapnet,
      title={HDMapNet: A Local Semantic Map Learning and Evaluation Framework}, 
      author={Qi Li and Yue Wang and Yilun Wang and Hang Zhao},
      year={2021},
      eprint={2107.06307},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Tsinghua MARS Lab
MARS Lab at IIIS, Tsinghua University
Tsinghua MARS Lab
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022