EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

Related tags

Deep LearningEdMIPS
Overview

EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

by Zhaowei Cai, and Nuno Vasconcelos.

This implementation is written by Zhaowei Cai at UC San Diego.

Introduction

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network architectures, including ResNet, GoogLeNet, and Inception-V3. More details can be found in the paper.

Citation

If you use our code/model/data, please cite our paper:

@inproceedings{cai20edmips,
  author = {Zhaowei Cai and Nuno Vasconcelos},
  Title = {Rethinking Differentiable Search for Mixed-Precision Neural Networks},
  booktitle = {CVPR},
  Year  = {2020}
}

Installation

  1. Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

  2. Clone the EdMIPS repository, and we'll call the directory that you cloned EdMIPS into EdMIPS_ROOT

    git clone https://github.com/zhaoweicai/EdMIPS.git
    cd EdMIPS_ROOT/

Searching the Mixed-precision Network with EdMIPS

You can start training EdMIPS. Take ResNet-18 for example.

python search.py \
  -a mixres18_w1234a234 --epochs 25 --step-epoch 10 --lr 0.1 --lra 0.01 --cd 0.00335 -j 16 \
  [your imagenet-folder with train and val folders]

The other network architectures are also available, including ResNet-50, GoogLeNet and Inception-V3.

Training the Searched Mixed-precision Network

After the EdMIPS searching is finished, with the checkpoint arch_checkpoint.pth.tar, you can start to train the classification model with the learned bit allocation.

python main.py \
  -a quantres18_cfg --epochs 95 --step-epoch 30 -j 16 \
  --ac arch_checkpoint.pth.tar \
  [your imagenet-folder with train and val folders]

Results

The results are shown as following:

network precision bit --cd top-1/5 acc. model
ResNet-18 uniform 2.0 65.1/86.2 download
ResNet-18 mixed 1.992 0.00335 65.9/86.5 download
ResNet-50 uniform 2.0 70.6/89.8 download
ResNet-50 mixed 2.007 0.00015 72.1/90.6 download
GoogleNet uniform 2.0 64.8/86.3 download
GoogleNet mixed 1.994 0.00045 67.8/88.0 download
Inception-V3 uniform 2.0 71.0/89.9 download
Inception-V3 mixed 1.982 0.0015 72.4/90.7 download

Disclaimer

  1. The training of EdMIPS has some variance. Tune --cd a little bit to get the optimal bit allocation you want.

  2. The BitOps are counted only on the quantized layers. They are normalized to the bit space as in the above table.

  3. Since some changes have been made after the paper submission, you may get slightly worse performances (0.1~0.2 points) than those in the paper.

If you encounter any issue when using our code/model, please let me know.

Owner
Zhaowei Cai
Zhaowei Cai
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023