Python parser for DTED data.

Related tags

Deep Learningdted
Overview

DTED Parser

This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This package is tested to work on Shuttle Radar Topography Mission (SRTM) DTED files (as far as I can tell these are the only publicly available DTED files). This can be used as a library to parse these files into numpy arrays and additionally exposes a CLI that can be used to investigate individual DTED files.

For more information and resources about the DTED file format see the end of the README.

How to install

You can install this as a normal python package using pip

pip install dted

How to use

The following example code will parse DTED file checked into this repository for testing.

As a library

Parsing a DTED file into a numpy array is as simple as:

import numpy as np
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
assert isinstance(tile.data, np.ndarray)

Additionally you can access the metadata of the DTED file (the User Header Label, Data Set Identification, and Accuracy Description records) easily.

from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
print(tile.dsi.south_west_corner)

Parsing entire DTED files has been heavily optimized, but does still take a little bit of time. On my machine (2014 MacbookPro) parsing the 25MB example file take about 120 ms. However, if you only need to look up specific terrain elevations within a DTED file you do not need to parse the entire file. Doing the following takes <1ms on my machine:

from pathlib import Path
from dted import LatLon, Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)
print(tile.get_elevation(LatLon(latitude=41.5, longitude=-70.5)))

If for some reason you really need to eek out every bit of performance and you thoroughly trust your DTED data, you speed up the data parsing by skipping the checksum verification. Doing the following takes about 75 ms on my machine:

import numpy as np
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)
tile.load_data(perform_checksum=False)

assert isinstance(tile.data, np.ndarray)

The final functionality the dted.Tile class offers is to easily check if a coordinate location is contained within the DTED file. This also does not require that the DTED data is fully loaded into memory:

from pathlib import Path
from dted import LatLon, Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)

assert LatLon(latitude=41.5, longitude=-70.25) in tile

As a CLI

Installing this package into an activated virtual environment also exposes the dted terminal command. This provides three pieces of functionality:

  1. See report of the metadata of the DTED file.
  2. Lookup terrain elevation at a specific point within the DTED file.
  3. Display and ASCII representation of the DTED file in your terminal.

To get a report of the file metadata:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 
File Path:          test/data/n41_w071_1arc_v3.dt2 (24 MB)
Product Level:      DTED2
Security Code:      U
Compilation Date:   02/2000
Maintenance Date:   
Datums (V/H):       E96/WGS84

    (42.0N,71.0W)      (42.0N,70.0W)
          NW --------------- NE     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          SW --------------- SE     
    (41.0N,71.0W)      (41.0N,70.0W)

Origin:                 (41.0N,71.0W)
Resolution (lat/lon):   1.0"/1.0"
Accuracy (V/H):         6m/13m

To lookup terrain elevation at a specific point:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 --location 41.7 -70.4
51.0 meters

To display the DTED file in your terminal:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 --display

This will attempt to create an ASCII representation of the DTED file within your terminal at the best resolution possible. Increasing the size of your terminal window or zooming out your terminal window will increase the resolution of the chart:

Normal Resolution Image

High Resolution Image

Why did I add this feature? Why not?

If you want to plot this data like a sane person, you can use the following example code with the matplotlib package (not included)

import matplotlib.pyplot as plt
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
plt.imshow(tile.data.T[::-1], cmap="hot")

The DTED file format

This parser was created using the specification provided here:

https://www.dlr.de/eoc/Portaldata/60/Resources/dokumente/7_sat_miss/SRTM-XSAR-DEM-DTED-1.1.pdf

Some things to be aware of with the DTED file format:

  1. Some DTED files contain "void" values for data points where elevation data is not known (such as over bodies of water). An example of such a file can be found at test/data/n00_e006_3arc_v2.dt1. This package will emit a warning if void data is found, and the definition of the void value can be found in dted.definitions.VOID_DATA_VALUE.
  2. The DTED data is structured along longitudinal lines. Therefore, when accessing the data within the numpy array the rows correspond to longitude and the columns correspond to latitude. This may seem backwards to your intuition, i.e. you would access the elevation at a coordinate point with tile.data[longitude_index, latitude_index].
  3. Elevation within the DTED file is encoded using "signed magnitude" notation. This has no effect on a user of this package interacting with the parsed terrain elevation data, but it does slow down the parsing of this data as I do not know of an optimized method of parsing signed magnitude data in python. If someone knows how to do this this parsing library could become even faster.

Where to find DTED data

Publicly available DTED data is relatively hard to find and access, but it can be done. The DTED files I used for testing and developing this package come from https://earthexplorer.usgs.gov/.

This EarthExplorer app provided by the USGS provides an interface to download many types of terrain data, including the SRTM DTED data. However, you need to make an account with them in order to perform and I'm unsure of a way to use their machine-to-machine API to automate downloading data.

Contributing

Contributions are absolutely encouraged! To develop on this project you need to install the poetry package manager.

Clone the repo:

[email protected]$ git clone https://github.com/bbonenfant/dted

Create and activate the virtual environment:

[email protected]$ poetry install && source .venv/bin/activate

To run the tests:

(.venv) [email protected]$ pytest .

If you are getting BLACK errors from pytest, run the black code formatter:

(.venv) [email protected]$ black .
Comments
  • Areas above 50° or below -50° Latitude

    Areas above 50° or below -50° Latitude

    Hello,

    I am trying to use the Tile(dted_file) on SRTM 1arc DTED files. The publicly available SRTM 1arc data is actually not 1arc by 1arc but 2arc by 1arc, as soon as you are working with areas above 50° Latitude.

    This causes the Tile() method to fail with the error: dted.errors.InvalidFileError: Checksum failed for data block

    When I try to ignore the checksum with load_data(perform_checksum=False), it fails with the error: dted.errors.InvalidFileError: All data blocks within a DTED file must begin with 170. Found: 1

    Do I just have to do something differently or is this something you could fix? It works great otherwise!

    Thank you for the help.

    opened by StefanBregenzer 10
  • Error in calculating latitude and longitude indices

    Error in calculating latitude and longitude indices

    I receive drastically different elevation values for the same location when using DTED levels 0, 1, and 2. An area that I know to be approximately 735m MSL reports the following:

    ~/Desktop/dted/w117$ dted n34.dt0 --location 34.353932 -116.295523
    1035.0 meters
    ~/Desktop/dted/w117$ dted n34.dt1 --location 34.353932 -116.295523
    2557.0 meters
    ~/Desktop/dted/w117$ dted n34.dt2 --location 34.353932 -116.295523
    733.0 meters
    

    In looking at the source code, I believe the calculations for the latitude and longitude indices in the DTED data are wrong:

    I believe this:

            lat_interval, lon_interval = self.dsi.latitude_interval, self.dsi.longitude_interval
            latitude_index = round(
                (latlon.latitude - origin_latitude) * (latitude_count - 1) / lat_interval
            )
            longitude_index = round(
                (latlon.longitude - origin_longitude) * (longitude_count - 1) / lon_interval
            )
    

    Should be this:

            latitude_index = round(
                (latlon.latitude - origin_latitude) * (latitude_count - 1) 
            )
            longitude_index = round(
                (latlon.longitude - origin_longitude) * (longitude_count - 1)
            )
    
    opened by rickpresley 2
  • Adding in the Tiles class.

    Adding in the Tiles class.

    New Tiles class added.

    • allows user to pass in directory of dted files, and query that list for elevations
    • functionality works regardless of filenames
    • functionality works recursively in directory
    • works even with a mix of dted 1 and dted 2 files
    • added a description of how to use in the README
    opened by westonCoder 0
  • Import Error

    Import Error

    I am getting an error when importing Tile from dted. I am using a fresh Conda environment but cannot seem to get around this error. I can see the Tile class in dted/dted/tile.py but the import does not work. Error shown below:

    ImportError: cannot import name 'Tile' from partially initialized module 'dted' (most likely due to a circular import) (/<PATH TO FILE>/dted.py)
    
    Python Version: Python 3.9.12
    

    Thanks for your help in advance!

    opened by OliverHeilmann 4
  • Query a DTED Directory instead of a specific File

    Query a DTED Directory instead of a specific File

    It'd be very useful to have a directory full of dted files, and be able to query the pool of tiles instead of checking each individual one. It could get fancy with loading tiles as needed, tracking frequency of use to free up older ones, etc.

    enhancement 
    opened by KPB3rd 2
Releases(v1.0.3)
Owner
Ben Bonenfant
Ben Bonenfant
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023