*ObjDetApp* deploys a pytorch model for object detection

Overview
*ObjDetApp* deploys a pytorch model for object detection

   ____  _     _ _____       _
  / __ \| |   (_)  __ \     | |     /\
 | |  | | |__  _| |  | | ___| |_   /  \   _ __  _ __
 | |  | | '_ \| | |  | |/ _ \ __| / /\ \ | '_ \| '_ \
 | |__| | |_) | | |__| |  __/ |_ / ____ \| |_) | |_) |
  \____/|_.__/| |_____/ \___|\__/_/    \_\ .__/| .__/
             _/ |                        | |   | |
            |__/                         |_|   |_|

====================================================================
CONTENTS                                                  *Contents*

    1. Introduction .................... |Introduction|
    2. Prerequisites ................... |Prerequisites|
    3. Usage ........................... |Usage|
        3.1 WebApp ..................... |WebAppUsage|
        3.2 GUIApp ..................... |GUIAppUsage|
    4. Credits ......................... |Credits|
    5. License ......................... |License|

====================================================================
Section 1: Introduction                               *Introduction*

This is a side project (or not qualified as a project) derived from a school
assignment, which focuses on the deployment of a pytorch model for object
detection, hence the name.

The model's performance is really bad but this app doesn't focus on that anyway.
You can help me perfect and package it by forking.

App tested on Linux.

====================================================================
Section 2: Prerequisites                             *Prerequisites*

Get trained *model_state_dict.pth* from https://drive.google.com/file/d/1oi8iIQGn0OFSRf44hWLI8kCbj5OrlkCy/view?usp=sharing and put it under this folder.

>
    sudo apt install default-libmysqlclient-dev
    pip install -r requirements.txt
    npm install
<

====================================================================
Section 3: Usage                                             *Usage*

WebApp:~

                                                       *WebAppUsage*

Start backend server (Default port: 5000)

>
    FLASK_ENV=development FLASK_APP=server.py flask run
<

Build (Default into build/)

>
    npm run build
<

Serve the webpage (Default port: 5512)

>
    npm run dev
<

GUIApp:~

                                                       *GUIAppUsage*

>
    python gui.py
<

====================================================================
Section 4: Credits                                         *Credits*

ObjDetApp wouldn't be possible without these wonderful projects.

https://github.com/pallets/flask
https://github.com/pytorch/pytorch

Shout out to @sgrvinod for his great tutorial.

https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection/

====================================================================
Section 5: License                                         *License*

Copyright © 2021 Will Chao. Distributed under the MIT license.

====================================================================
vim:tw=78:ts=8:ft=help:noet:nospell
Owner
Will Chao
SWE in China, Front-end developer, Vim enthusiast
Will Chao
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023