An example to implement a new backbone with OpenMMLab framework.

Overview

Backbone example on OpenMMLab framework

English | 简体中文

Introduction

This is an template repo about how to use OpenMMLab framework to develop a new backbone for multiple vision tasks.

With OpenMMLab framework, you can easily develop a new backbone and use MMClassification, MMDetection and MMSegmentation to benchmark your backbone on classification, detection and segmentation tasks.

Setup environment

It requires PyTorch and the following OpenMMLab packages:

  • MIM: A command-line tool to manage OpenMMLab packages and experiments.
  • MMCV: OpenMMLab foundational library for computer vision.
  • MMClassification: OpenMMLab image classification toolbox and benchmark. Besides classification, it's also a repository to store various backbones.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.

Assume you have prepared your Python and PyTorch environment, just use the following command to setup the environment.

pip install openmim mmcls mmdet mmsegmentation
mim install mmcv-full

Data preparation

The data structure looks like below:

data/
├── imagenet
│   ├── train
│   ├── val
│   └── meta
│       ├── train.txt
│       └── val.txt
├── ade
│   └── ADEChallengeData2016
│       ├── annotations
│       └── images
└── coco
    ├── annotations
    │   ├── instance_train2017.json
    │   └── instance_val2017.json
    ├── train2017
    └── val2017

Here, we only list the minimal files for training and validation on ImageNet (classification), ADE20K (segmentation) and COCO (object detection).

If you want benchmark on more datasets or tasks, for example, panoptic segmentation with MMDetection, just organize your dataset according to MMDetection's requirements. For semantic segmentation task, you can organize your dataset according to this tutorial

Usage

Implement your backbone

In this example repository, we use the ConvNeXt as an example to show how to implement a backbone quickly.

  1. Create your backbone file and put it in the models folder. In this example, models/convnext.py.

    In this file, just implement your backbone with PyTorch with two modifications:

    1. The backbone and modules should inherits mmcv.runner.BaseModule. The BaseModule is almost the same as the torch.nn.Module, and supports using init_cfg to specify the initizalization method includes pre-trained model.

    2. Use one-line decorator as below to register the backbone class to the mmcls.models.BACKBONES registry.

      @BACKBONES.register_module(force=True)

      What is registry? Have a look at here!

  2. [Optional] If you want to add some extra components for specific task, you can also add it refers to models/det/layer_decay_optimizer_constructor.py.

  3. Add your backbone class and custom components to models/__init__.py.

Create config files

Add your config files for each task to configs/. If your are not familiar with config files, the tutorial can help you.

In a word, use base config files of model, dataset, schedule and runtime to compose your config files. Of course, you can also override some settings of base config in your config files, even write all settings in one file.

In this template, we provide a suit of popular base config files, you can also find more useful base configs from mmcls, mmdet and mmseg.

Training and testing

For training and testing, you can directly use mim to train and test the model

At first, you need to add the current folder the the PYTHONPATH, so that Python can find your model files.

export PYTHONPATH=`pwd`:$PYTHONPATH 

On local single GPU:

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)"

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself

On multiple GPUs (4 GPUs here):

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)" --launcher pytorch --gpus 4

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm --launcher pytorch --gpus 4

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4 

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU --launcher pytorch --gpus 4
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself

On multiple GPUs in multiple nodes with Slurm (total 16 GPUs here):

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)" --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself
  • PARTITION: the slurm partition you are using
Owner
Ma Zerun
Ma Zerun
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022