[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

Overview

EPCDepth

EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details are described in our paper:

Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

Rui Peng, Ronggang Wang, Yawen Lai, Luyang Tang, Yangang Cai

ICCV 2021 (arxiv)

EPCDepth can produce the most accurate and sharpest result. In the last example, the depth of the person in the second red box should be greater than that of the road sign because the road sign obscures the person. Only our model accurately captures the cue of occlusion.

โš™ Setup

1. Recommended environment

  • PyTorch 1.1
  • Python 3.6

2. KITTI data

You can download the raw KITTI dataset (about 175GB) by running:

wget -i dataset/kitti_archives_to_download.txt -P <your kitti path>/
cd <your kitti path>
unzip "*.zip"

Then, we recommend that you converted the png images to jpeg with this command:

find <your kitti path>/ -name '*.png' | parallel 'convert -quality 92 -sampling-factor 2x2,1x1,1x1 {.}.png {.}.jpg && rm {}'

or you can skip this conversion step and by manually adjusting the suffix of the image from .jpg to .png in dataset/kitti_dataset.py. Our pre-trained model is trained in jpg, and the test performance on png will slightly decrease.

3. Prepare depth hint

Once you have downloaded the KITTI dataset as in the previous step, you need to prepare the depth hint by running:

python precompute_depth_hints.py --data_path <your kitti path>

the generated depth hint will be saved to <your kitti path>/depth_hints. You should also pay attention to the suffix of the image.

๐Ÿ“Š Evaluation

1. Download models

Download our pretrained model and put it to <your model path>.

Pre-trained PP HxW Backbone Output Scale Abs Rel Sq Rel RMSE ฮด < 1.25
model18_lr โˆš 192x640 resnet18 (pt) d0 0.0998 0.722 4.475 0.888
d2 0.1 0.712 4.462 0.886
model18 โˆš 320x1024 resnet18 (pt) d0 0.0925 0.671 4.297 0.899
d2 0.0920 0.655 4.268 0.898
model50 โˆš 320x1024 resnet50 (pt) d0 0.0905 0.646 4.207 0.901
d2 0.0905 0.629 4.187 0.900

Note: pt refers to pre-trained on ImageNet, and the results of low resolution are a bit different from the paper.

2. KITTI evaluation

This operation will save the estimated disparity map to <your disparity save path>. To recreate the results from our paper, run:

python main.py 
    --val --data_path <your kitti path> --resume <your model path>/model18.pth.tar 
    --use_full_scale --post_process --output_scale 0 --disps_path <your disparity save path>

The shape of saved disparities in numpy data format is (N, H, W).

3. NYUv2 evaluation

We validate the generalization ability on the NYU-Depth-V2 dataset using the mode trained on the KITTI dataset. Download the testing data nyu_test.tar.gz, and unzip it to <your nyuv2 testing date path>. All evaluation codes are in the nyuv2Testing folder. Run:

python nyuv2_testing.py 
    --data_path <your nyuv2 testing date path>
    --resume <your mode path>/model50.pth.tar --post_process
    --save_dir <your nyuv2 disparity save path>

By default, only the visualization results (png format) of the predicted disparity and ground-truth will be saved to <your nyuv2 disparity save path> on NYUv2 dataset.

๐Ÿ“ฆ KITTI Results

You can download our precomputed disparity predictions from the following links:

Disparity PP HxW Backbone Output Scale Abs Rel Sq Rel RMSE ฮด < 1.25
disps18_lr โˆš 192x640 resnet18 (pt) d0 0.0998 0.722 4.475 0.888
disps18 โˆš 320x1024 resnet18 (pt) d0 0.0925 0.671 4.297 0.899
disps50 โˆš 320x1024 resnet50 (pt) d0 0.0905 0.646 4.207 0.901

๐Ÿ–ผ Visualization

To visualize the disparity map saved in the KITTI evaluation (or other disparities in numpy data format), run:

python main.py --vis --disps_path <your disparity save path>/disps50.npy

The visualized depth map will be saved to <your disparity save path>/disps_vis in png format.

โณ Training

To train the model from scratch, run:

python main.py 
    --data_path <your kitti path> --model_dir <checkpoint save dir> 
    --logs_dir <tensorboard save dir> --pretrained --post_process 
    --use_depth_hint --use_spp_distillation --use_data_graft 
    --use_full_scale --gpu_ids 0

๐Ÿ”ง Suggestion

  1. The magnitude of performance improvement: Data Grafting > Full-Scale > Self-Distillation. We noticed that the performance improvement of self-distillation becomes insignificant when the model capacity is large. Therefore, it is potential to explore more accurate self-distillation label extraction methods and better self-distillation strategies in the future.
  2. According to our experimental experience, the convergence of the self-supervised monocular depth estimation model using a larger backbone network is relatively unstable. You can verify your innovations on the small backbone first, and then adjust the learning rate appropriately to train on the big backbone.
  3. We found that using a pure RSU encoder has better performance than the traditional Resnet encoder, but unfortunately there is no RSU encoder pre-trained on Imagenet. Therefore, we firmly believe that someone can pre-train the RSU encoder on Imagenet and replace the resnet encoder of this model to get huge performance improvement.

โš– Citation

If you find our work useful in your research please consider citing our paper:

@inproceedings{epcdepth,
    title = {Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation},
    author = {Peng, Rui and Wang, Ronggang and Lai, Yawen and Tang, Luyang and Cai, Yangang},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
    year = {2021}
}

๐Ÿ‘ฉโ€ Acknowledgements

Our depth hint module refers to DepthHints, the NYUv2 pre-processing refers to P2Net, and the RSU block refers to U2Net.

Owner
Rui Peng
Rui Peng
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schรคfer 0 Jun 19, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT๋ฅผ ํ™œ์šฉํ•œ ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์œ„ํ˜‘ ์ƒํ™ฉ์ธ์ง€(2020 ์ธ๊ณต์ง€๋Šฅ ๊ทธ๋žœ๋“œ ์ฑŒ๋ฆฐ์ง€) ๋ณธ ํ”„๋กœ์ ํŠธ๋Š” ETRI์—์„œ ์ œ๊ณต๋œ ํ•œ๊ตญ์–ด korBERT ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ํญ๋ ฅ ๊ธฐ๋ฐ˜ ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ถ„๋ฅ˜ ๋ชจ๋ธ๋“ค์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๊ฐœ๋ฐœ์ž๋“ค์ด ์ฐธ์—ฌํ•œ 2020 ์ธ๊ณต์ง€

Young-Seok Choi 23 Jan 25, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . โ”œโ”€โ”€ gpt2 # Code for GPT2 style autoregressive LM โ”‚ โ”œโ”€โ”€ train_e2e.py # high-level script

530 Jan 04, 2023
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023