Scalable Graph Neural Networks for Heterogeneous Graphs

Related tags

Deep LearningNARS
Overview

Neighbor Averaging over Relation Subgraphs (NARS)

NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor averaging techniques that have been previously used in e.g. SIGN to heterogeneous scenarios by generating neighbor-averaged features on sampled relation induced subgraphs.

For more details, please check out our paper:

Scalable Graph Neural Networks for Heterogeneous Graphs

Setup

Dependencies

  • torch==1.5.1+cu101
  • dgl-cu101==0.4.3.post2
  • ogb==1.2.1
  • dglke==0.1.0

Docker

We have prepared a dockerfile for building a container with clean environment and all required dependencies. Please checkout instructions in docker.

Data Preparation

Download and pre-process OAG dataset (optional)

If you plan to evaluate on OAG dataset, you need to follow instructions in oag_dataset to download and pre-process dataset.

Generate input for featureless node types

In academic graph datasets (ACM, MAG, OAG) in which only paper nodes are associated with input features. NARS featurizes other node types with TransE relational graph embedding pre-trained on the graph structure.

Please follow instructions in graph_embed to generate embeddings for each dataset.

Sample relation subsets

NARS samples Relation Subsets (see our paper for details). Please follow the instructions in sample_relation_subsets to generate these subsets.

Or you may skip this step and use the example subsets that have added to this repository.

Run NARS Experiments

NARS are evaluated on three academic graph datasets to predict publishing venues and fields of papers.

ACM

python3 train.py --dataset acm --use-emb TransE_acm --R 2 \
    --use-relation-subsets sample_relation_subsets/examples/acm \
    --num-hidden 64 --lr 0.003 --dropout 0.7 --eval-every 1 \
    --num-epochs 100 --input-dropout

OGBN-MAG

python3 train.py --dataset mag --use-emb TransE_mag --R 5 \
    --use-relation-subset sample_relation_subsets/examples/mag \
    --eval-batch-size 50000 --num-hidden 512 --lr 0.001 --batch-s 50000 \
    --dropout 0.5 --num-epochs 1000

OAG (venue prediction)

python3 train.py --dataset oag_venue --use-emb TransE_oag_venue --R 3 \
    --use-relation-subsets sample_relation_subsets/examples/oag_venue \
    --eval-batch-size 25000 --num-hidden 256 --lr 0.001 --batch-size 1000 \
    --data-dir oag_dataset --dropout 0.5 --num-epochs 200

OAG (L1-field prediction)

python3 train.py --dataset oag_L1 --use-emb TransE_oag_L1 --R 3 \
    --use-relation-subsets sample_relation_subsets/examples/oag_L1 \
    --eval-batch-size 25000 --num-hidden 256 --lr 0.001 --batch-size 1000 \
    --data-dir oag_dataset --dropout 0.5 --num-epochs 200

Results

Here is a summary of model performance using example relation subsets:

For ACM and OGBN-MAG dataset, the task is to predict paper publishing venue.

Dataset # Params Test Accuracy
ACM 0.40M 0.9305±0.0043
OGBN-MAG 4.13M 0.5240±0.0016

For OAG dataset, there are two different node predictions tasks: predicting venue (single-label) and L1-field (multi-label). And we follow Heterogeneous Graph Transformer to evaluate using NDCG and MRR metrics.

Task # Params NDCG MRR
Venue 2.24M 0.5214±0.0010 0.3434±0.0012
L1-field 1.41M 0.86420.0022 0.8542±0.0019

Run with limited GPU memory

The above commands were tested on Tesla V100 (32 GB) and Tesla T4 (15GB). If your GPU memory isn't enough for handling large graphs, try the following:

  • add --cpu-process to the command to move preprocessing logic to CPU
  • reduce evaluation batch size with --eval-batch-size. The evaluation result won't be affected since model is fixed.
  • reduce training batch with --batch-size

Run NARS with Reduced CPU Memory Footprint

As mentioned in our paper, using a lot of relation subsets may consume too much CPU memory. To reduce CPU memory footprint, we implemented an optimization in train_partial.py which trains part of our feature aggregation weights at a time.

Using OGBN-MAG dataset as an example, the following command randomly picks 3 subsets from all 8 sampled relation subsets and trains their aggregation weights every 10 epochs.

python3 train_partial.py --dataset mag --use-emb TransE_mag --R 5 \
    --use-relation-subsets sample_relation_subsets/examples/mag \
    --eval-batch-size 50000 --num-hidden 512 --lr 0.001 --batch-size 50000 \
    --dropout 0.5 --num-epochs 1000 --sample-size 3 --resample-every 10

Citation

Please cite our paper with:

@article{yu2020scalable,
    title={Scalable Graph Neural Networks for Heterogeneous Graphs},
    author={Yu, Lingfan and Shen, Jiajun and Li, Jinyang and Lerer, Adam},
    journal={arXiv preprint arXiv:2011.09679},
    year={2020}
}

License

NARS is CC-by-NC licensed, as found in the LICENSE file.

Owner
Facebook Research
Facebook Research
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021