Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Related tags

Deep LearningDVM
Overview

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]


Paper: https://arxiv.org/abs/2104.11208

Introduction

Despite the significant progress made by deep learning in natural image matting, there has been so far no representative work on deep learning for video matting due to the inherent technical challenges in reasoning temporal domain and lack of large-scale video matting datasets. In this paper, we propose a deep learning-based video matting framework which employs a novel and effective spatio-temporal feature aggregation module (ST-FAM). As optical flow estimation can be very unreliable within matting regions, ST-FAM is designed to effectively align and aggregate information across different spatial scales and temporal frames within the network decoder. To eliminate frame-by-frame trimap annotations, a lightweight interactive trimap propagation network is also introduced. The other contribution consists of a large-scale video matting dataset with groundtruth alpha mattes for quantitative evaluation and real-world high-resolution videos with trimaps for qualitative evaluation. Quantitative and qualitative experimental results show that our framework significantly outperforms conventional video matting and deep image matting methods applied to video in presence of multi-frame temporal information.

Framework

framework

Dataset

We composite foreground images and videos onto high-resolution background videos to generate large-scale video matting training/testing dataset. Follow the steps to prepare the datasets. The structure is as the following.

DVM
  ├── fg
    ├── image
      ├── train
        ├── alpha
          ├── xxx.png
          ├── yyy.png
          ├── ...
        ├── fg
          ├── xxx.png
          ├── yyy.png
          ├── ...
      ├── test
        ├── alpha
          ├── xxx.png
          ├── yyy.png
          ├── ...
        ├── fg
          ├── xxx.png
          ├── yyy.png
          ├── ...
        ├── trimap
          ├── xxx.png
          ├── yyy.png
          ├── ...
    ├── video
      ├── train
        ├── 0000
          ├── a.mp4
          ├── f.mp4
        ├── ...
      ├── test
        ├── 0000
          ├── a.mp4
          ├── f.mp4
        ├── ...
  ├── bg
    ├── train
      ├── 0000.mp4
      ├── 0001.mp4
      ├── ...
    ├── test
      ├── 0000.mp4
      ├── 0001.mp4
      ├── ...
  1. Please contact Brian Price ([email protected]) for the Adobe Image Matting dataset.

  2. Put training fg/alpha images and testing fg/alpha/trimap images from Adobe dataset in the corresponding directories.

  3. Download training/testing videos and place them in the corresponding directories.

    Link: https://pan.baidu.com/s/1yBJr0SqsEjDToVAUb8dSCw Password: l9ck

  4. Use data/process.py to generate training/testing datasets. About 1T storage is needed.

Reference

If you find our work useful in your research, please consider citing:

@inproceedings{sun2021dvm,
  author    = {Yanan Sun and Guanzhi Wang and Qiao Gu and Chi-Keung Tang and Yu-Wing Tai}
  title     = {Deep Video Matting via Spatio-Temporal Alignment and Aggregation},
  booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year      = {2021},
}

Contact

If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]).

Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023