Simple, efficient and flexible vision toolbox for mxnet framework.

Overview

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox is a toolbox aiming to provide a general and simple interface for vision tasks. This project is greatly inspired by PyTorch and torchvision. Detailed copyright files are on the way. Improvements and suggestions are welcome.

Installation

MXBox is now available on PyPi.

pip install mxbox

Features

  1. Define preprocess as a flow
transform = transforms.Compose([
    transforms.RandomSizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.mx.ToNdArray(),
    transforms.mx.Normalize(mean = [ 0.485, 0.456, 0.406 ],
                            std  = [ 0.229, 0.224, 0.225 ]),
])

PS: By default, mxbox uses PIL to read and transform images. But it also supports other backends like accimage and skimage.

More usages can be found in documents and examples.

  1. Build an multi-thread DataLoader in few lines

Common datasets such as cifar10, cifar100, SVHN, MNIST are out-of-the-box. You can simply load them from mxbox.datasets.

from mxbox import transforms, datasets, DataLoader
trans = transforms.Compose([
        transforms.mx.ToNdArray(), 
        transforms.mx.Normalize(mean = [ 0.485, 0.456, 0.406 ],
                                std  = [ 0.229, 0.224, 0.225 ]),
])
dataset = datasets.CIFAR10('~/.mxbox/cifar10', transform=trans, download=True)

batch_size = 32
feedin_shapes = {
    'batch_size': batch_size,
    'data': [mx.io.DataDesc(name='data', shape=(batch_size, 3, 32, 32), layout='NCHW')],
    'label': [mx.io.DataDesc(name='softmax_label', shape=(batch_size, ), layout='N')]
}
loader = DataLoader(dataset, feedin_shapes, threads=8, shuffle=True)

Or you can also easily create your own, which only requires to implement __getitem__ and __len__.

class TooYoungScape(mxbox.Dataset):
    def __init__(self, root, lst, transform=None):
        self.root = root
        with open(osp.join(root, lst), 'r') as fp:
            self.lst = [line.strip().split('\t') for line in fp.readlines()]
        self.transform = transform

    def __getitem__(self, index):
        img = self.pil_loader(osp.join(self.root, self.lst[index][0]))
        if self.transform is not None:
            img = self.transform(img)
        return {'data': img, 'softmax_label': img}

    def __len__(self):
        return len(self.lst)
        
dataset = TooYoungScape('~/.mxbox/TooYoungScape', "train.lst", transform=trans)
loader = DataLoader(dataset, feedin_shapes, threads=8, shuffle=True)
  1. Load popular model with pretrained weights

Note: current under construction, many models lack of pretrained weights and some of their definition files are missing.

vgg = mxbox.models.vgg(num_classes=10, pretrained=True)
resnet = mxbox.models.resnet152(num_classes=10, pretrained=True)

TODO list

  1. FLAG options?

  2. Efficient prefetch.

  3. Common Models preparation.

  4. More friendly error logging.

Owner
Ligeng Zhu
Ph.D. student in [email protected], alumni at SFU and ZJU.
Ligeng Zhu
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022