Implementation of Axial attention - attending to multi-dimensional data efficiently

Overview

Axial Attention

PyPI version

Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has worked wonders for me and many other researchers.

Simply add some positional encoding to your data and pass it into this handy class, specifying which dimension is considered the embedding, and how many axial dimensions to rotate through. All the permutating, reshaping, will be taken care of for you.

This paper was actually rejected on the basis of being too simple. And yet, it has since been used successfully in a number of applications, among those weather prediction, all-attention image segmentation. Just goes to show.

Install

$ pip install axial_attention

Usage

Image

import torch
from axial_attention import AxialAttention

img = torch.randn(1, 3, 256, 256)

attn = AxialAttention(
    dim = 3,               # embedding dimension
    dim_index = 1,         # where is the embedding dimension
    dim_heads = 32,        # dimension of each head. defaults to dim // heads if not supplied
    heads = 1,             # number of heads for multi-head attention
    num_dimensions = 2,    # number of axial dimensions (images is 2, video is 3, or more)
    sum_axial_out = True   # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true
)

attn(img) # (1, 3, 256, 256)

Channel-last image latents

import torch
from axial_attention import AxialAttention

img = torch.randn(1, 20, 20, 512)

attn = AxialAttention(
    dim = 512,           # embedding dimension
    dim_index = -1,      # where is the embedding dimension
    heads = 8,           # number of heads for multi-head attention
    num_dimensions = 2,  # number of axial dimensions (images is 2, video is 3, or more)
)

attn(img) # (1, 20, 20 ,512)

Video

import torch
from axial_attention import AxialAttention

video = torch.randn(1, 5, 128, 256, 256)

attn = AxialAttention(
    dim = 128,           # embedding dimension
    dim_index = 2,       # where is the embedding dimension
    heads = 8,           # number of heads for multi-head attention
    num_dimensions = 3,  # number of axial dimensions (images is 2, video is 3, or more)
)

attn(video) # (1, 5, 128, 256, 256)

Image Transformer, with reversible network

import torch
from torch import nn
from axial_attention import AxialImageTransformer

conv1x1 = nn.Conv2d(3, 128, 1)

transformer = AxialImageTransformer(
    dim = 128,
    depth = 12,
    reversible = True
)

img = torch.randn(1, 3, 512, 512)

transformer(conv1x1(img)) # (1, 3, 512, 512)

With axial positional embedding

import torch
from axial_attention import AxialAttention, AxialPositionalEmbedding

img = torch.randn(1, 512, 20, 20)

attn = AxialAttention(
    dim = 512,
    heads = 8,
    dim_index = 1
)

pos_emb = AxialPositionalEmbedding(
    dim = 512,
    shape = (20, 20)
)

img = pos_emb(img)  # (1, 512, 20, 20)  - now positionally embedded
img = attn(img)     # (1, 512, 20, 20)

Citation

@misc{ho2019axial,
    title  = {Axial Attention in Multidimensional Transformers},
    author = {Jonathan Ho and Nal Kalchbrenner and Dirk Weissenborn and Tim Salimans},
    year   = {2019},
    archivePrefix = {arXiv}
}
@misc{wang2020axialdeeplab,
    title   = {Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation},
    author  = {Huiyu Wang and Yukun Zhu and Bradley Green and Hartwig Adam and Alan Yuille and Liang-Chieh Chen},
    year    = {2020},
    eprint  = {2003.07853},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@inproceedings{huang2019ccnet,
    title   = {Ccnet: Criss-cross attention for semantic segmentation},
    author  = {Huang, Zilong and Wang, Xinggang and Huang, Lichao and Huang, Chang and Wei, Yunchao and Liu, Wenyu},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    pages   = {603--612},
    year    = {2019}
}
Comments
  • Reimplementation of image modeling results in AXIAL ATTENTION IN MULTIDIMENSIONAL TRANSFORMERS.

    Reimplementation of image modeling results in AXIAL ATTENTION IN MULTIDIMENSIONAL TRANSFORMERS.

    Hi, this is a nice paper. How can I use your shared code to reimplement the image modeling task on ImageNet 32x32?

    Thanks. Looking forward to your reply.

    opened by liujiaheng 3
  • AxialPositionalEmbedding

    AxialPositionalEmbedding

    Would you be able to provide an example of how to add the positional encoding with the AxialPositionalEmbedding class or explain what the emb_dim, emb_dim_index, and dimensions arguments are specifically? Thanks for the repo!

    opened by dansola 2
  • Problem of ParameterList with nn.DataParallel

    Problem of ParameterList with nn.DataParallel

    https://github.com/lucidrains/axial-attention/blob/a1a483c0f4a3922eef8f9a857dc1a802523bd437/axial_attention/axial_attention.py#L100

    This line would lead to the following issue: "UserWarning: nn.ParameterList is being used with DataParallel but this is not supported. This list will appear empty for the models replicated on each GPU except the original one."

    It is a known issue here

    The simple solution should be to store the Parameters directly on the Module.

    class AxialPositionalEmbedding(nn.Module):
        def __init__(self, dim, shape, emb_dim_index = 1):
            super().__init__()
            parameters = []
            total_dimensions = len(shape) + 2
            ax_dim_indexes = [i for i in range(1, total_dimensions) if i != emb_dim_index]
            
            for i, (axial_dim, axial_dim_index) in enumerate(zip(shape, ax_dim_indexes)):
                shape = [1] * total_dimensions
                shape[emb_dim_index] = dim
                shape[axial_dim_index] = axial_dim
                parameter = nn.Parameter(torch.randn(*shape))
                setattr(self, f'param_{i}', parameter)
                setattr(self, f'param_num', i+1)
    
        def forward(self, x):
            for i in range(self.param_num):
                x = x + getattr(self, f'param_{i}')
            return x
    
    opened by resuly 1
  • Positional embeddings for different image sizes

    Positional embeddings for different image sizes

    Hi, once again thanks for your great work! Since I want to use the axial attention with positional embedding for unknown image sizes (But I know the max size), I was wondering if you think that changing https://github.com/lucidrains/axial-attention/blob/master/axial_attention/axial_attention.py#L104 to

    for cnt, param in enumerate(self.params):
        x = x + param[([slice(None)] * (cnt + 2) + [slice(x.shape[cnt + 2])])]
    

    does the right thing. I can now do this

    v = AxialImageTransformer(64, depth = 1, axial_pos_emb_shape = (64,64), dim_index = 1)       
    t1 = torch.randn(2, 64, 17, 16)
    t2 = torch.randn(2, 64, 13, 18)
    t3 = torch.randn(2, 64, 64, 64)
    print(v(t1).shape)
    print(v(t2).shape)
    print(v(t3).shape)
    Output:
    torch.Size([2, 64, 17, 16])
    torch.Size([2, 64, 13, 18])
    torch.Size([2, 64, 64, 64])
    

    I think that makes it easier to integrate it in fully convolutional nets for multi scale training.

    opened by PhilippMarquardt 1
  • User Warning: Mixed memory format inputs detected

    User Warning: Mixed memory format inputs detected

    At site-packages/axial_attention/axial_attention.py:176: UserWarning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. ( Triggered internally at /opt/conda/conda-bld/pytorch_1595629427286/work/aten/src/ATen/native/TensorIterator.cpp:918.) return sum(map(lambda axial_attn: axial_attn(x), self.axial_attentions))

    I am using latest axial_attention (v0.4) and Pytorch 1.6.0

    Code:

    import torch
    from axial_attention import AxialAttention
    
    img = torch.randn(1, 24, 64, 64)
    
    attn = AxialAttention(
        dim = 24,               # embedding dimension
        dim_index = 1,         # where is the embedding dimension
        dim_heads = 32,        # dimension of each head. defaults to dim // heads if not supplied
        heads = 8,             # number of heads for multi-head attention
        num_dimensions = 2,    # number of axial dimensions (images is 2, video is 3, or more)
        sum_axial_out = True   # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true
    )
    
    out= attn(img) 
    
    

    Will it affect trainings and inference?

    opened by lokeshkvn 1
  • Examples for image sequence/video

    Examples for image sequence/video

    Hello, Do you have examples of integrating this on image sequences? I am trying to get rid of ConvLSTM's for encoding sequence of images and AxialAttention may be a good starting point. Do you have an exmaple/notebook that I could look to integrate this on my type of data? Thank you for this amazing work. Thomas

    opened by tcapelle 1
  • Ask a question

    Ask a question

    I'm interested to your excellent work,but I'm new to pytorch,can I ask a question where is the start position in the code that i will understand whole project from it ?Thx for your reply

    opened by meiguoofa 0
  • Hi, I have a problem

    Hi, I have a problem

    import torch from axial_attention import AxialAttention

    img = torch.randn(1, 3, 256, 256)

    attn = AxialAttention( dim = 3, # embedding dimension dim_index = 1, # where is the embedding dimension dim_heads = 32, # dimension of each head. defaults to dim // heads if not supplied heads = 1, # number of heads for multi-head attention num_dimensions = 2, # number of axial dimensions (images is 2, video is 3, or more) sum_axial_out = True # whether to sum the contributions of attention on each axis, or to run the input through them sequentially. defaults to true )

    attn(img) # (1, 3, 256, 256)

    Thanks for your great project, I want to ask if my image is one channel image will influence the num_dimensions value?

    opened by meiguoofa 0
  • Extracting attention maps

    Extracting attention maps

    Hi there,

    Excellent project!

    I'm using axial-attention with video (1, 5, 128, 256, 256) and sum_axial_out=True, and I wish to visualise the attention maps.

    Essentially, given my video, and two frame indices frame_a_idx and frame_b_idx, I need to extract the attention map over frame_b to a chosen pixel (x, y) in frame_a (after the axial sum).

    My understanding is that I should be able to reshape the dots (after softmax) according to the permutations in calculate_permutations, then sum these permuted dots together to form a final attention score tensor of an accessible shape, thus ready for visualisation.

    I am slightly stuck due to the numerous axial permutations and shape mismatches. What I am doing is as follows:

    In SelfAttention.forward():

    dots_reshaped = dots.reshape(b, h, t, t)
    return out, dots_reshaped
    

    In PermuteToFrom.forward():

     # attention
    axial, dots = self.fn(axial, **kwargs)
    
    # restore to original shape and permutation
    axial = axial.reshape(*shape)
    axial = axial.permute(*self.inv_permutation).contiguous()
    dots = dots.reshape(*shape[:3], *dots.shape[1:])
    

    However, I am unsure of how to un-permute the dots appropriately such that all resulting “axes” (of different sizes) can be summed. If you have suggestions or code for doing so, it would be very much appreciated, thanks!

    opened by vibrant-galaxy 3
Releases(0.6.1)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022