[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

Overview

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

1S-Lab, Nanyang Technological University  2SenseTime Research  3Shanghai AI Laboratory
*equal contribution  +corresponding author

Accepted to SIGGRAPH 2022 (Journal Track)

TL;DR

AvatarCLIP generate and animate avatars given descriptions of body shapes, appearances and motions.

A tall and skinny female soldier that is arguing. A skinny ninja that is raising both arms. An overweight sumo wrestler that is sitting. A tall and fat Iron Man that is running.

This repository contains the official implementation of AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars.


[Project Page][arXiv][High-Res PDF (166M)][Supplementary Video][Colab Demo]

Updates

[05/2022] Paper uploaded to arXiv. arXiv

[05/2022] Add a Colab Demo for avatar generation! Open In Colab

[05/2022] Support converting the generated avatar to the animatable FBX format! Go checkout how to use the FBX models. Or checkout the instructions for the conversion codes.

[05/2022] Code release for avatar generation part!

[04/2022] AvatarCLIP is accepted to SIGGRAPH 2022 (Journal Track) 🥳 !

Citation

If you find our work useful for your research, please consider citing the paper:

@article{hong2022avatarclip,
    title={AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars},
    author={Hong, Fangzhou and Zhang, Mingyuan and Pan, Liang and Cai, Zhongang and Yang, Lei and Liu, Ziwei},
    journal={ACM Transactions on Graphics (TOG)},
    volume={41},
    number={4},
    articleno={161},
    pages={1--19},
    year={2022},
    publisher={ACM New York, NY, USA},
    doi={10.1145/3528223.3530094},
}

Use Generated FBX Models

Download

Go visit our project page. Go to the section 'Avatar Gallery'. Pick a model you like. Click 'Load Model' below. Click 'Download FBX' link at the bottom of the pop-up viewer.

Import to Your Favourite 3D Software (e.g. Blender, Unity3D)

The FBX models are already rigged. Use your motion library to animate it!

Upload to Mixamo

To make use of the rich motion library provided by Mixamo, you can also upload the FBX model to Mixamo. The rigging process is completely automatic!

Installation

We recommend using anaconda to manage the python environment. The setup commands below are provided for your reference.

git clone https://github.com/hongfz16/AvatarCLIP.git
cd AvatarCLIP
conda create -n AvatarCLIP python=3.7
conda activate AvatarCLIP
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.1 -c pytorch
pip install -r requirements.txt

Other than the above steps, you should also install neural_renderer following its instructions. Before compiling neural_renderer (or after compiling should also be fine), remember to add the following three lines to neural_renderer/perspective.py after line 19.

x[z<=0] = 0
y[z<=0] = 0
z[z<=0] = 0

This quick fix is for a rendering issue where objects behide the camera will also be rendered. Be careful when using this fixed version of neural_renderer on your other projects, because this fix will cause the rendering process not differentiable.

Data Preparation

Download SMPL Models

Register and download SMPL models here. Put the downloaded models in the folder smpl_models. The folder structure should look like

./
├── ...
└── smpl_models/
    ├── smpl/
        ├── SMPL_FEMALE.pkl
        ├── SMPL_MALE.pkl
        └── SMPL_NEUTRAL.pkl

Download Pretrained Models & Other Data

This download is only for coarse shape generation. You can skip if you only want to use other parts. Download the pretrained weights and other required data here. Put them in the folder AvatarGen so that the folder structure should look like

./
├── ...
└── AvatarGen/
    └── ShapeGen/
        └── data/
            ├── codebook.pth
            ├── model_VAE_16.pth
            ├── nongrey_male_0110.jpg
            ├── smpl_uv.mtl
            └── smpl_uv.obj

Avatar Generation

Coarse Shape Generation

Folder AvatarGen/ShapeGen contains codes for this part. Run the follow command to generate the coarse shape corresponding to the shape description 'a strong man'. We recommend to use the prompt augmentation 'a 3d rendering of xxx in unreal engine' for better results. The generated coarse body mesh will be stored under AvatarGen/ShapeGen/output/coarse_shape.

python main.py --target_txt 'a 3d rendering of a strong man in unreal engine'

Then we need to render the mesh for initialization of the implicit avatar representation. Use the following command for rendering.

python render.py --coarse_shape_obj output/coarse_shape/a_3d_rendering_of_a_strong_man_in_unreal_engine.obj --output_folder ${RENDER_FOLDER}

Shape Sculpting and Texture Generation

Note that all the codes are tested on NVIDIA V100 (32GB memory). Therefore, in order to run on GPUs with lower memory, please try to scale down the network or tune down max_ray_num in the config files. You can refer to confs/examples_small/example.conf or our colab demo for a scale-down version of AvatarCLIP.

Folder AvatarGen/AppearanceGen contains codes for this part. We provide data, pretrained model and scripts to perform shape sculpting and texture generation on a zero-beta body (mean shape defined by SMPL). We provide many example scripts under AvatarGen/AppearanceGen/confs/examples. For example, if we want to generate 'Abraham Lincoln', which is defined in the config file confs/examples/abrahamlincoln.conf, use the following command.

python main.py --mode train_clip --conf confs/examples/abrahamlincoln.conf

Results will be stored in AvatarCLIP/AvatarGen/AppearanceGen/exp/smpl/examples/abrahamlincoln.

If you wish to perform shape sculpting and texture generation on the previously generated coarse shape. We also provide example config files in confs/base_models/astrongman.conf confs/astrongman/*.conf. Two steps of optimization are required as follows.

# Initilization of the implicit avatar
python main.py --mode train --conf confs/base_models/astrongman.conf
# Shape sculpting and texture generation on the initialized implicit avatar
python main.py --mode train_clip --conf confs/astrongman/hulk.conf

Marching Cube

To extract meshes from the generated implicit avatar, one may use the following command.

python main.py --mode validate_mesh --conf confs/examples/abrahamlincoln.conf

The final high resolution mesh will be stored as AvatarCLIP/AvatarGen/AppearanceGen/exp/smpl/examples/abrahamlincoln/meshes/00030000.ply

Convert Avatar to FBX Format

For the convenience of using the generated avatar with modern graphics pipeline, we also provide scripts to rig the avatar and convert to FBX format. See the instructions here.

Motion Generation

TBA

License

Distributed under the MIT License. See LICENSE for more information.

Related Works

There are lots of wonderful works that inspired our work or came around the same time as ours.

Dream Fields enables zero-shot text-driven general 3D object generation using CLIP and NeRF.

Text2Mesh proposes to edit a template mesh by predicting offsets and colors per vertex using CLIP and differentiable rendering.

CLIP-NeRF can manipulate 3D objects represented by NeRF with natural languages or examplar images by leveraging CLIP.

Text to Mesh facilitates zero-shot text-driven general mesh generation by deforming from a sphere mesh guided by CLIP.

MotionCLIP establishes a projection from the CLIP text space to the motion space through supervised training, which leads to amazing text-driven motion generation results.

Acknowledgements

This study is supported by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), and under the RIE2020 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).

We thank the following repositories for their contributions in our implementation: NeuS, smplx, vposer, Smplx2FBX.

Rohit Ingole 2 Mar 24, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023