[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

Overview

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

1S-Lab, Nanyang Technological University  2SenseTime Research  3Shanghai AI Laboratory
*equal contribution  +corresponding author

Accepted to SIGGRAPH 2022 (Journal Track)

TL;DR

AvatarCLIP generate and animate avatars given descriptions of body shapes, appearances and motions.

A tall and skinny female soldier that is arguing. A skinny ninja that is raising both arms. An overweight sumo wrestler that is sitting. A tall and fat Iron Man that is running.

This repository contains the official implementation of AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars.


[Project Page][arXiv][High-Res PDF (166M)][Supplementary Video][Colab Demo]

Updates

[05/2022] Paper uploaded to arXiv. arXiv

[05/2022] Add a Colab Demo for avatar generation! Open In Colab

[05/2022] Support converting the generated avatar to the animatable FBX format! Go checkout how to use the FBX models. Or checkout the instructions for the conversion codes.

[05/2022] Code release for avatar generation part!

[04/2022] AvatarCLIP is accepted to SIGGRAPH 2022 (Journal Track) 🥳 !

Citation

If you find our work useful for your research, please consider citing the paper:

@article{hong2022avatarclip,
    title={AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars},
    author={Hong, Fangzhou and Zhang, Mingyuan and Pan, Liang and Cai, Zhongang and Yang, Lei and Liu, Ziwei},
    journal={ACM Transactions on Graphics (TOG)},
    volume={41},
    number={4},
    articleno={161},
    pages={1--19},
    year={2022},
    publisher={ACM New York, NY, USA},
    doi={10.1145/3528223.3530094},
}

Use Generated FBX Models

Download

Go visit our project page. Go to the section 'Avatar Gallery'. Pick a model you like. Click 'Load Model' below. Click 'Download FBX' link at the bottom of the pop-up viewer.

Import to Your Favourite 3D Software (e.g. Blender, Unity3D)

The FBX models are already rigged. Use your motion library to animate it!

Upload to Mixamo

To make use of the rich motion library provided by Mixamo, you can also upload the FBX model to Mixamo. The rigging process is completely automatic!

Installation

We recommend using anaconda to manage the python environment. The setup commands below are provided for your reference.

git clone https://github.com/hongfz16/AvatarCLIP.git
cd AvatarCLIP
conda create -n AvatarCLIP python=3.7
conda activate AvatarCLIP
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.1 -c pytorch
pip install -r requirements.txt

Other than the above steps, you should also install neural_renderer following its instructions. Before compiling neural_renderer (or after compiling should also be fine), remember to add the following three lines to neural_renderer/perspective.py after line 19.

x[z<=0] = 0
y[z<=0] = 0
z[z<=0] = 0

This quick fix is for a rendering issue where objects behide the camera will also be rendered. Be careful when using this fixed version of neural_renderer on your other projects, because this fix will cause the rendering process not differentiable.

Data Preparation

Download SMPL Models

Register and download SMPL models here. Put the downloaded models in the folder smpl_models. The folder structure should look like

./
├── ...
└── smpl_models/
    ├── smpl/
        ├── SMPL_FEMALE.pkl
        ├── SMPL_MALE.pkl
        └── SMPL_NEUTRAL.pkl

Download Pretrained Models & Other Data

This download is only for coarse shape generation. You can skip if you only want to use other parts. Download the pretrained weights and other required data here. Put them in the folder AvatarGen so that the folder structure should look like

./
├── ...
└── AvatarGen/
    └── ShapeGen/
        └── data/
            ├── codebook.pth
            ├── model_VAE_16.pth
            ├── nongrey_male_0110.jpg
            ├── smpl_uv.mtl
            └── smpl_uv.obj

Avatar Generation

Coarse Shape Generation

Folder AvatarGen/ShapeGen contains codes for this part. Run the follow command to generate the coarse shape corresponding to the shape description 'a strong man'. We recommend to use the prompt augmentation 'a 3d rendering of xxx in unreal engine' for better results. The generated coarse body mesh will be stored under AvatarGen/ShapeGen/output/coarse_shape.

python main.py --target_txt 'a 3d rendering of a strong man in unreal engine'

Then we need to render the mesh for initialization of the implicit avatar representation. Use the following command for rendering.

python render.py --coarse_shape_obj output/coarse_shape/a_3d_rendering_of_a_strong_man_in_unreal_engine.obj --output_folder ${RENDER_FOLDER}

Shape Sculpting and Texture Generation

Note that all the codes are tested on NVIDIA V100 (32GB memory). Therefore, in order to run on GPUs with lower memory, please try to scale down the network or tune down max_ray_num in the config files. You can refer to confs/examples_small/example.conf or our colab demo for a scale-down version of AvatarCLIP.

Folder AvatarGen/AppearanceGen contains codes for this part. We provide data, pretrained model and scripts to perform shape sculpting and texture generation on a zero-beta body (mean shape defined by SMPL). We provide many example scripts under AvatarGen/AppearanceGen/confs/examples. For example, if we want to generate 'Abraham Lincoln', which is defined in the config file confs/examples/abrahamlincoln.conf, use the following command.

python main.py --mode train_clip --conf confs/examples/abrahamlincoln.conf

Results will be stored in AvatarCLIP/AvatarGen/AppearanceGen/exp/smpl/examples/abrahamlincoln.

If you wish to perform shape sculpting and texture generation on the previously generated coarse shape. We also provide example config files in confs/base_models/astrongman.conf confs/astrongman/*.conf. Two steps of optimization are required as follows.

# Initilization of the implicit avatar
python main.py --mode train --conf confs/base_models/astrongman.conf
# Shape sculpting and texture generation on the initialized implicit avatar
python main.py --mode train_clip --conf confs/astrongman/hulk.conf

Marching Cube

To extract meshes from the generated implicit avatar, one may use the following command.

python main.py --mode validate_mesh --conf confs/examples/abrahamlincoln.conf

The final high resolution mesh will be stored as AvatarCLIP/AvatarGen/AppearanceGen/exp/smpl/examples/abrahamlincoln/meshes/00030000.ply

Convert Avatar to FBX Format

For the convenience of using the generated avatar with modern graphics pipeline, we also provide scripts to rig the avatar and convert to FBX format. See the instructions here.

Motion Generation

TBA

License

Distributed under the MIT License. See LICENSE for more information.

Related Works

There are lots of wonderful works that inspired our work or came around the same time as ours.

Dream Fields enables zero-shot text-driven general 3D object generation using CLIP and NeRF.

Text2Mesh proposes to edit a template mesh by predicting offsets and colors per vertex using CLIP and differentiable rendering.

CLIP-NeRF can manipulate 3D objects represented by NeRF with natural languages or examplar images by leveraging CLIP.

Text to Mesh facilitates zero-shot text-driven general mesh generation by deforming from a sphere mesh guided by CLIP.

MotionCLIP establishes a projection from the CLIP text space to the motion space through supervised training, which leads to amazing text-driven motion generation results.

Acknowledgements

This study is supported by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), and under the RIE2020 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).

We thank the following repositories for their contributions in our implementation: NeuS, smplx, vposer, Smplx2FBX.

Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022