Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Related tags

Deep LearningPMF
Overview

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021)

[中文|EN]

概述

本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影到图像上,获取对应的像素位置之后,将对应位置的图像信息投影回点云空间进行特征融合。但是,这种方式下并不能很好的利用图像丰富的视觉感知特征(例如形状、纹理等)。因此,我们尝试探索一种在RGB图像空间进行特征融合的方式,提出了一个基于视觉感知的多传感器融合方法(PMF)。详细内容可以查看我们的公开论文。

image-20211013141408045

主要实验结果

PWC

Leader board of [email protected]

image-20211013144333265

更多实验结果

我们在持续探索PMF框架的潜力,包括探索更大的模型、更好的ImageNet预训练模型、其他的数据集等。我们的实验结果证明了,PMF框架是易于拓展的,并且其性能可以通过使用更好的主干网络而实现提升。详细的说明可以查看文件

方法 数据集 mIoU (%)
PMF-ResNet34 SemanticKITTI Validation Set 63.9
PMF-ResNet34 nuScenes Validation Set 76.9
PMF-ResNet50 nuScenes Validation Set 79.4
PMF48-ResNet101 SensatUrban Test Set (ICCV2021 Competition) 66.2 (排名 5)

使用说明

注:代码中涉及到包括数据集在内的各种路径配置,请根据自己的实际路径进行修改

代码结构

|--- pc_processor/ 点云处理的Python包
	|--- checkpoint/ 生成实验结果目录
	|--- dataset/ 数据集处理
	|--- layers/ 常用网络层
	|--- loss/ 损失函数
	|--- metrices/ 模型性能指标函数
	|--- models/ 网络模型
	|--- postproc/ 后处理,主要是KNN
	|--- utils/ 其他函数
|--- tasks/ 实验任务
	|--- pmf/ PMF 训练源代码
	|--- pmf_eval_nuscenes/ PMF 模型在nuScenes评估代码
		|--- testset_eval/ 合并PMF以及salsanext结果并在nuScenes测试集上评估
		|--- xxx.py PMF 模型在nuScenes评估代码
	|--- pmf_eval_semantickitti/ PMF 在SemanticKITTI valset上评估代码
	|--- salsanext/ SalsaNext 训练代码,基于官方公开代码进行修改
	|--- salsanext_eval_nuscenes/ SalsaNext 在nuScenes 数据集上评估代码

模型训练

训练任务代码目录结构

|--- pmf/
	|--- config_server_kitti.yaml SemanticKITTI数据集训练的配置脚本
	|--- config_server_nus.yaml nuScenes数据集训练的配置脚本
	|--- main.py 主函数
	|--- trainer.py 训练代码
	|--- option.py 配置解析代码
	|--- run.sh 执行脚本,需要 chmod+x 赋予可执行权限

步骤

  1. 进入 tasks/pmf目录,修改配置文件 config_server_kitti.yaml中数据集路径 data_root 为实际数据集路径。如果有需要可以修改gpubatch_size等参数
  2. 修改 run.sh 确保 nproc_per_node 的数值与yaml文件中配置的gpu数量一致
  3. 运行如下指令执行训练脚本
./run.sh
# 或者 bash run.sh
  1. 执行成功之后会在 PMF/experiments/PMF-SemanticKitti路径下自动生成实验日志文件,目录结构如下:
|--- log_dataset_network_xxxx/
	|--- checkpoint/ 训练断点文件以及最佳模型参数
	|--- code/ 代码备份
	|--- log/ 控制台输出日志以及配置文件副本
	|--- events.out.tfevents.xxx tensorboard文件

控制台输出内容如下,其中最后的输出时间为实验预估时间

image-20211013152939956

模型推理

模型推理代码目录结构

|--- pmf_eval_semantickitti/ SemanticKITTI评估代码
	|--- config_server_kitti.yaml 配置脚本
	|--- infer.py 推理脚本
	|--- option.py 配置解析脚本

步骤

  1. 进入 tasks/pmf_eval_semantickitti目录,修改配置文件 config_server_kitti.yaml中数据集路径 data_root 为实际数据集路径。修改pretrained_path指向训练生成的日志文件夹目录。
  2. 运行如下命令执行脚本
python infer.py config_server_kitti.yaml
  1. 运行成功之后,会在训练模型所在目录下生成评估结果日志文件,文件夹目录结构如下:
|--- PMF/experiments/PMF-SemanticKitti/log_xxxx/ 训练结果路径
	|--- Eval_xxxxx/ 评估结果路径
		|--- code/ 代码备份
		|--- log/ 控制台日志文件
		|--- pred/ 用于提交评估的文件

引用

@InProceedings{Zhuang_2021_ICCV,
    author    = {Zhuang, Zhuangwei and Li, Rong and Jia, Kui and Wang, Qicheng and Li, Yuanqing and Tan, Mingkui},
    title     = {Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {16280-16290}
}
Owner
ICE
Model compression; Object detection; Point cloud processing;
ICE
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023