商品推荐系统

Overview

商品top50推荐系统

问题建模

本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。

推荐系统架构方案

本项目采用传统的召回+排序的方案。在召回模块采用deepwalk, node2vec,item_feature, itemCF四种方法进行多路召回,为每位用户召回1000个商品。在排序阶段采用wide&deep模型,对召回的1000个商品进行排序。将排序所得的分数依据商品点击量进行后处理,来增大对非热门商品的曝光度。最后根据处理后的分数为每位用户推荐50个商品。

最终实现了在验证集上top50召回率0.807, 测试集上top50召回率0.712

文件结构

数据来源于阿里天池平台开源数据,在百度网盘里面,可以自行下载,按照以下路径创建文件夹以及放置数据。

百度网盘链接:https://pan.baidu.com/s/1sspNWKYVxf-QFTrCjdqfoQ 提取码:853t

│  feature_list.csv                               # List the features we used in ranking process
│  project_structure.txt                          # The tree structure of this project
├─ build_graph_model.py                          # Build deepwalk model and node2vec model
├─ final_rank.py                          # Build wide&deep network
├─ final_solution.py                          # Main program
├─ recall_function.py                          # Functions used to recall items
├─ item_feat.pkl                          # Item feature after PCA
├─ top100_recall_feature.pkl                          # Recalled 100 items for each user by using item_feature
├─ top300_recall_deepwalk_result.pkl                          # Recalled 300 items for each user by using deepwalk
├─ top300_recall_node2vec_result.pkl                          # Recalled 300 items for each user by using node2vec
├─ topk_recall.pkl                          # Recalled 1000 items for each user by combining all ways
├─ train_eval_rank.pkl                          # Cross validation set after ranking
├─ wide_and_deep.h5                          # Wide&Deep model using full training set
├─ wide_and_deep_no_cv.h5                          # Wide&Deep model using training set except cross validation set
├─ data                                           # Origin dataset
│  ├─ underexpose_test
│  └─ underexpose_train
├─ readme.md
├─ deepwalk_offline.bin                                      # deepwalk model
└─ node2vec_offline.bin                                      # node2vec model

Python库环境依赖

tensorflow==2.3.1
scikit-learn==0.23.2
joblib==0.17.0
networkx==2.1
gensim==3.8.3
pandas==0.25.1
numpy==1.18.5
tqdm==4.26.0

声明

本项目所有代码仅供各位同学学习参考使用。如有任何对代码的问题请邮箱联系:[email protected]

If you have any issue please feel free to contact me at [email protected]

Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022