Diagnostic tests for linguistic capacities in language models

Overview

LM diagnostics

This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models, by Allyson Ettinger.

Diagnostic test data

The datasets folder contains TSV files with data for each diagnostic test, along with explanatory README files for each dataset.

Code

[All code now updated to be run with Python 3.]

The code in this section can be used to process the diagnostic datasets for input to a language model, and then to run the diagnostic tests on that language model's predictions. The code should be used in three steps:

Step 1: Process datasets to produce inputs for LM

proc_datasets.py can be used to process the provided datasets into 1) <testname>-contextlist files containing contexts (one per line) on which the LM's predictions should be conditioned, and b) <testname>-targetlist files containing target words (one per line, aligned with the contexts in *-contextlist) for which you will need probabilities conditioned on the corresponding contexts. Repeats in *-contextlist are intentional, to align with the targets in *-targetlist.

Basic usage:

python proc_datasets.py \
  --outputdir <location for output files> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv \
  --add_mask_tok
  • add_mask_tok flag will append '[MASK]' to the contexts in *-contextlist, for use with BERT.
  • <testname> comes from the following list: cprag, role, negsimp, negnat for CPRAG-34, ROLE-88, NEG-88-SIMP and NEG-88-NAT, respectively.

Step 2: Get LM predictions/probabilities

You will need to produce two files: one containing top word predictions conditioned on each context, and one containing the probabilities for each target word conditioned on its corresponding context.

Predictions: Model word predictions should be written to a file with naming modelpreds-<testname>-<modelname>. Each line of this file should contain the top word predictions conditioned on the context in the corresponding line in *-contextlist. Word predictions on a given line should be separated by whitespace. Number of predictions per line should be no less than the highest k that you want to use for accuracy tests.

Probabilities Model target probabilities should be written to a file with naming modeltgtprobs-<testname>-<modelname>. Each line of this file should contain the probability of the target word on the corresponding line of *-targetlist, conditioned on the context on the corresponding line of *-contextlist.

  • <testname> list is as above. <modelname> should be the name of the model that will be input to the code in Step 3.

Step 3: Run accuracy and sensitivity tests for each diagnostic

prediction_accuracy_tests.py takes modelpreds-<testname>-<modelname> as input and runs word prediction accuracy tests.

Basic usage:

python prediction_accuracy_tests.py \
  --preddir <location of modelpreds-<testname>-<modelname>> \
  --resultsdir <location for results files> \
  --models <names of models to be tested, e.g., bert-base-uncased bert-large-uncased> \
  --k_values <list of k values to be tested, e.g., 1 5> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv

sensitivity_tests.py takes modeltgtprobs-<testname>-<modelname> as input and runs sensitivity tests.

Basic usage:

python sensitivity_tests.py \
  --probdir <location of modelpreds-<testname>-<modelname>> \
  --resultsdir <location for results files> \
  --models <names of models to be tested, e.g., bert-base-uncased bert-large-uncased> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv

Experimental code

run_diagnostics_bert.py is the code that was used for the experiments on BERTBASE and BERTLARGE reported in the paper, including perturbations.

Example usage:

python run_diagnostics_bert.py \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --resultsdir <location for results files> \
  --bertbase <BERT BASE location> \
  --bertlarge <BERT LARGE location> \
  --incl_perturb
  • bertbase and bertlarge specify locations for PyTorch BERTBASE and BERTLARGE models -- each folder is expected to include vocab.txt, bert_config.json, and pytorch_model.bin for the corresponding PyTorch BERT model. (Note that experiments were run with the original pytorch-pretrained-bert version, so I can't guarantee identical results with the updated pytorch-transformers.)
  • incl_perturb runs experiments with all perturbations reported in the paper. Without this flag, only runs experiments without perturbations.
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022