Project NII pytorch scripts

Overview

project-NII-pytorch-scripts

By Xin Wang, National Institute of Informatics, since 2021

I am a new pytorch user. If you have any suggestions or questions, pleas email wangxin at nii dot ac dot jp

Table of Contents


1. Note

For tutorials on neural vocoders

Tutorials are available in ./tutorials. Please follow the ./tutorials/README and work in this folder first

cd ./tutorials
head -n 2 README.md
# Hands-on materials for neural vocoders

For other projects

Just follow the rest of the README.

The repository is relatively large. You may use --depth 1 option to skip unnecessary files.

git clone --depth 1 https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts.git

Updates

2022-01-08: upload hn-sinc-nsf + hifi-gan

2022-01-08: upload RawNet2 for anti-spoofing

2. Overview

This repository hosts Pytorch codes for the following projects:

2.1 Neural source-filter waveform model

./project/01-nsf

  1. Cyclic-noise neural source-filter waveform model (NSF)

  2. Harmonic-plus-noise NSF with trainable sinc filter (Hn-sinc-NSF)

  3. Harmonic-plus-noise NSF with fixed FIR filter (Hn-NSF)

  4. Hn-sinc-NSF + HiFiGAN discriminator

All the projects include a pre-trained model on CMU-arctic database (4 speakers) and a demo script to run, train, do inference. Please check ./project/01-nsf/README.

Generated samples from pre-trained models are in ./project/01-nsf/*/__pre_trained/output. If not, please run the demo script to produce waveforms using pre-trained models.

Tutorial on NSF models is also available in ./tutorials

Note that this is the re-implementation of the projects based on CURRENNT. All the papers published so far used CURRENNT implementation.

Many samples can be found on NSF homepage.

2.2 Other neural waveform models

./project/05-nn-vocoders

  1. WaveNet vocoder

  2. WaveGlow

  3. Blow

  4. iLPCNet

All the projects include a pre-trained model and a one-click demo script. Please check ./project/05-nn-vocoders/README.

Generated samples from pre-trained models are in ./project/05-nn-vocoders/*/__pre_trained/output.

Tutorial is also available in ./tutorials

2.3 ASVspoof project with toy example

./project/04-asvspoof2021-toy

It takes time to download ASVspoof2019 database. Therefore, this project demonstrates how to train and evaluate the anti-spoofing model using a toy dataset.

Please try this project before checking other ASVspoof projects below.

A similar project is adopted for ASVspoof2021 LFCC-LCNN baseline, although the LFCC front-end is slightly different.

Please check ./project/04-asvspoof2021-toy/README.

2.4 Speech anti-spoofing for ASVspoof 2019 LA

./project/03-asvspoof-mega

This is for this anti-spoofing project (A Comparative Study on Recent Neural Spoofing Countermeasures for Synthetic Speech Detection, paper on arxiv).

There were 36 systems investigated, each of which was trained and evaluated for 6 rounds with different random seeds.

EER-mintDCF

This project is later extended to a book chapter called A Practical Guide to Logical Access Voice Presentation Attack Detection. Single system using RawNet2 is added, and score fusion is added.

EER-mintDCF

Pre-trained models, scores, training recipes are all available. Please check ./project/03-asvspoof-mega/README.

2.5 (Preliminary) speech anti-spoofing

./project/02-asvspoof

  1. Baseline LFCC + LCNN-binary-classifier (lfcc-lcnn-sigmoid)

  2. LFCC + LCNN + angular softmax (lfcc-lcnn-a-softmax)

  3. LFCC + LCNN + one-class softmax (lfcc-lcnn-ocsoftmax)

  4. LFCC + ResNet18 + one-class softmax (lfcc-restnet-ocsoftmax)

This is a pilot test on ASVspoof2019 LA task. I trained each system for 6 times on various GPU devices (single V100 or P100 card), each time with a different random initial seed. Figure below shows the DET curves for these systems: det_curve

The results vary a lot when simply changing the initial random seeds, even with the same random seed, Pytorch environment, and deterministic algorithm selected. This preliminary test motivated the study in ./project-03-asvspoof-mega.

For LCNN, please check this paper; for LFCC, please check this paper; for one-class softmax in ASVspoof, please check this paper.

3. Python environment

You may use ./env.yml to create the environment:

# create environment
conda env create -f env.yml

# load environment (whose name is pytorch-1.6)
conda activate pytorch-1.6

4. How to use

Take project/01-nsf/cyc-noise-nsf as an example:

# cd into one project
cd project/01-nsf/cyc-noise-nsf-4

# add PYTHONPATH and activate conda environment
source ../../../env.sh 

# run the script
bash 00_demo.sh

The printed info will show what is happening. The script may need 1 day or more to finish.

You may also put the job to the background rather than waiting for the job in front of the terminal:

# run the script in background
bash 00_demo.sh > log_batch 2>&1 &

The above steps will download the CMU-arctic data, run waveform generation using a pre-trained model, and train a new model.

5. Project design and convention

Data format

  • Waveform: 16/32-bit PCM or 32-bit float WAV that can be read by scipy.io.wavfile.read

  • Other data: binary, float-32bit, little endian (numpy dtype ). The data can be read in python by:

# for a data of shape [N, M]
f = open(filepath,'rb')
datatype = np.dtype(('
   ,(M,)))
data = np.fromfile(f,dtype=datatype)
f.close()

I assume data should be stored in c_continuous format (row-major). There are helper functions in ./core_scripts/data_io/io_tools.py to read and write binary data:

# create a float32 data array
import numpy as np
data = np.asarray(np.random.randn(5, 3), dtype=np.float32)

# write to './temp.bin' and read it as data2
import core_scripts.data_io.io_tools as readwrite
readwrite.f_write_raw_mat(data, './temp.bin')
data2 = readwrite.f_read_raw_mat('./temp.bin', 3)

# result should 0
data - data2

More instructions can be found in the Jupyter notebook ./tutorials/c01_data_format.ipynb.

Files in this repository

Name Function
./core_scripts scripts to manage the training process, data io, and so on
./core_modules finished pytorch modules
./sandbox new functions and modules to be test
./project project directories, and each folder correspond to one model for one dataset
./project/*/*/main.py script to load data and run training and inference
./project/*/*/model.py model definition based on Pytorch APIs
./project/*/*/config.py configurations for training/val/test set data

The motivation is to separate the training and inference process, the model definition, and the data configuration. For example:

  • To define a new model, change model.py

  • To run on a new database, change config.py

How the script works

The script starts with main.py and calls different function for model training and inference.

During training:

     <main.py>        Entry point and controller of training process
        |           
   Argument parse     core_scripts/config_parse/arg_parse.py
   Initialization     core_scripts/startup_config.py
   Choose device     
        | 
Initialize & load     core_scripts/data_io/customize_dataset.py
training data set
        |----------|
        .     Load data set   <config.py> 
        .     configuration 
        .          |
        .     Loop over       core_scripts/data_io/customize_dataset.py
        .     data subset
        .          |       
        .          |---------|
        .          .    Load one subset   core_scripts/data_io/default_data_io.py
        .          .         |
        .          |---------|
        .          |
        .     Combine subsets 
        .     into one set
        .          |
        |----------|
        |
Initialize & load 
development data set  
        |
Initialize Model     <model.py>
Model(), Loss()
        | 
Initialize Optimizer core_scripts/op_manager/op_manager.py
        |
Load checkpoint      --trained-model option to main.py
        |
Start training       core_scripts/nn_manager/nn_manager.py f_train_wrapper()
        |             
        |----------|
        .          |
        .     Loop over training data
        .     for one epoch
        .          |
        .          |-------|    core_scripts/nn_manager/nn_manager.py f_run_one_epoch()
        .          |       |    
        .          |  Loop over 
        .          |  training data
        .          |       |
        .          |       |-------|
        .          |       .    get data_in, data_tar, data_info
        .          |       .    Call data_gen <- Model.forward(...)   <mode.py>
        .          |       .    Call Loss.compute()                   <mode.py>
        .          |       .    loss.backward()
        .          |       .    optimizer.step()
        .          |       .       |
        .          |       |-------|
        .          |       |
        .          |  Save checkpoint 
        .          |       |
        .          |  Early stop?
        .          |       | No  \
        .          |       |      \ Yes
        .          |<------|       |
        .                          |
        |--------------------------|
       Done

A detailed flowchat is ./misc/APPENDIX_1.md. This may be useful if you want to hack on the code.

6 On NSF projects (./project/01-nsf)

Differences from CURRENNT implementation

There may be more, but here are the important ones:

  • "Batch-normalization": in CURRENNT, "batch-normalization" is conducted along the length sequence, i.e., assuming each frame as one sample;

  • No bias in CNN and FF: due to the 1st point, NSF in this repository uses bias=false for CNN and feedforward layers in neural filter blocks, which can be helpful to make the hidden signals around 0;

  • Smaller learning rate: due to the 1st point, learning rate in this repository is decreased from 0.0003 to a smaller value. Accordingly, more training epochs are required;

  • STFT framing/padding: in CURRENNT, the first frame starts from the 1st step of a signal; in this Pytorch repository (as Librosa), the first frame is centered around the 1st step of a signal, and the frame is padded with 0;

  • STFT backward: in CURRENNT, STFT backward follows the steps in this paper; in Pytorch repository, backward over STFT is done by the Pytorch library.

  • ...

The learning curves look similar to the CURRENNT version. learning_curve

24kHz

Most of my experiments are done on 16 kHz waveforms. For 24 kHz waveforms, FIR or sinc digital filters in the model may be changed for better performance:

  1. hn-nsf: lp_v, lp_u, hp_v, and hp_u are calculated for 16 kHz configurations. For different sampling rate, you may use this online tool http://t-filter.engineerjs.com to get the filter coefficients. In this case, the stop-band for lp_v and lp_u is extended to 12k, while the pass-band for hp_v and hp_u is extended to 12k. The reason is that, no matter what is the sampling rate, the actual formats (in Hz) and spectral of sounds don't change with the sampling rate;

  2. hn-sinc-nsf and cyc-noise-nsf: for the similar reason above, the cut-off-frequency value (0, 1) should be adjusted. I will try (hidden_feat * 0.2 + uv * 0.4 + 0.3) * 16 / 24 in model.CondModuleHnSincNSF.get_cut_f();

Links

The end

Owner
Yamagishi and Echizen Laboratories, National Institute of Informatics
Yamagishi and Echizen Laboratories, National Institute of Informatics, Japan
Yamagishi and Echizen Laboratories, National Institute of Informatics
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022